Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác ABM và tam giác KBM có: AB=BK, BM chung, góc ABM= góc KBM
suy ra 2 tam giác trên bằng nhau
hok tốt
tu ve hinh :
xet tamgiac ABM va tamgiac KBM co : MB chung
goc ABM = goc MBK do BM la phan giac cua goc ABC (gt)
AB = AK (gt)
=> tammgiac ABM = tamgiac KBM (c - g - c)
a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)
Suy ra: AH=AK(hai cạnh tương ứng)
b) Ta có: \(\widehat{BDA}+\widehat{DAH}=90^0\)
\(\widehat{BAD}+\widehat{KAD}=90^0\)
mà \(\widehat{DAH}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
nên \(\widehat{BDA}=\widehat{BAD}\)
Xét ΔABD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)
nên ΔABD cân tại B(Định lí đảo của tam giác cân)
c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
A )Ta có tam giác ABC cân tại A
=> ˆABC=ˆACBABC^=ACB^
Và AB = AC
Xét hai tam giác vuông BCK và CBH ta có :
BC chung
ˆKBC=ˆBCHKBC^=BCH^
=>BCK = CBH (cạnh huyền - góc nhọn )
=>BH = CK (đpcm)
B) ta có BCK = CBH
=> ˆHBC=ˆKCBHBC^=KCB^
=> ˆABH=ˆACKABH^=ACK^
=> tam giác OBC cân tại O
=> BO = CO
Xét tam giác ABO và tam giác ACO
AB = AC
BO = CO (cmt)
ˆABH=ˆACKABH^=ACK^
=> ABO=ACO (c-g-c)
=> ˆBAO=ˆCAOBAO^=CAO^
=> AO là phân giác góc ABC (đpcm)
C) ta có
AI là phân giác góc ABC
Mà tam giác ABC cân tại A
=> AI vuông góc với cạnh BC (đpcm)
Mong các bạn trả lời trước 9h30