Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{AB}{3}=\frac{AC}{4}\)
=> \(\frac{AB}{AC}=\frac{3}{4}\)
Độ dài cạnh AB là:
14 : (3 + 4) x 3 = 6 (cm)
Độ dài cạnh AC là:
14 - 6 = 8 (cm)
Áp dụng định lý Py-ta-go, ta có:
\(AB^2+AC^2=BC^2=6^2+8^2=100=BC^2=>BC=10\)
Đ/S: 10
Chúc bạn học tốt !!!
Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{14}{7}=2\)
=> \(\hept{\begin{cases}\frac{AB}{3}=2\\\frac{AC}{4}=2\end{cases}}\)=> \(\hept{\begin{cases}AB=2.3=6\\AC=2.4=8\end{cases}}\)
Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A
=> BC2 = AB2 + AC2 = 62 + 82 = 36 + 64 = 100
=> BC = 10
Vậy ....
a, Ta có: AB là cạnh đối diện của góc C.
AC là cạnh đối diện của góc B.
Mà AB>AC, suy ra:
góc B< góc C.
Áp dụng Đ. L. py-ta-go vào tg ABC vuông tại A, có:
BC2=AC2+AB2
=>102=62+AB2
=>AB2=102-62
=100-36
=64.
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8(cm)
Chu vi của tam giác ABC là:
C=AB+AC+BC=6+8+10=24(cm)
a. xét tam giác ABH và tam giác ACH
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
BH = CH ( ABC cân, AH là đường cao cũng là trung tuyến )
Vậy tam giác ABH = tam giác ACH ( c.g.c )
b. xét tam giác vuông BNH và tam giác vuông CNH
BN = CM ( AB = AC ; AM = AN )
BH = CH
Vậy tam giác vuông BNH = tam giác vuông CNH ( cạnh huyền. cạnh góc vuông )
c. áp dụng định lý pitao vào tam giác vuông AHB:
\(AB^2=AH^2+BH^2\)
\(BH=\sqrt{10^2-8^2}=\sqrt{64}=8cm\)
=> BC = BH. 2 = 8.2 =16 cm
Chúc bạn học tốt!!!
a, Xét tam giác ABH và tam giác ACH
^AHB = ^AHC = 900
AB = AC (gt)
AH _ chung
Vậy tam giác ABH = tam giác ACH ( ch - cgv )
b, Xét tam ANB và tam giác AMC có :
^A _ chung
AM = AN(gt)
AB = AC (gt)
Vậy tam giác ANB = tam giác AMC ( c.g.c )
=> BN = CM ( 2 cạnh tương ứng )
c, Xét tam giác ABH vuông tại H, theo định lí Pytago
\(BH=\sqrt{AB^2-AH^2}=6cm\)
Xét tam giác ABC cân tại A có AH là đường cao nên đồng thời AH là đường trung tuyến
=> BC = 2BH = 12 cm