K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

a, Vì \(\widehat{AEM}=\widehat{AFM}=\widehat{EAF}=90^0\) nên AEMF là hcn

b, Vì M là trung điểm BC, MF//AB(⊥AC) nên F là trung điểm AC

Mà F là trung điểm MN nên AMCN là hbh

c, Để AMCN là hcn thì \(\widehat{AMC}=90^0\) hay AM là đường cao tam giác ABC

Mà AM là trung tuyến nên để AMCN là hcn thì ABC vuông cân tại A

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

Do đó: ADME là hình chữ nhật

18 tháng 11 2015

tick cho mình rồi mình giải cho

27 tháng 12 2020

Xl bạn trình độ mik chỉ làm đc vậy thôi nha!

 

D N A C B F E

                                            Chứng minh

a,         Xét tứ giác ANEF có:

                   Góc NAF= 90( vì ΔABC vuông tại A)

                       Góc ANF= 900 (vì EN⊥ AC)

                    Góc AFE= 900 ( vì EF ⊥ AB)

    ⇒ Tứ giác ANEF là hình chữ nhật( đpcm)

 

                          

27 tháng 12 2020

b)Xét tam giác BAC vuông tại A có:

AE là đường trung tuyến(BE=EC)

\(\Rightarrow\)AE=BE=EC

Xét t/g AEBD có:

BF=FA(EF vuông góc BA)

DF=FE(D đx với E qua F)

\(\Rightarrow\)T/g AEBD là hbh

Mà AE=BE(cmt)

\(\Rightarrow\)T/g AEBD là hthoi

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

b: Xét tứ giác PEDQ có

M là trung điểm chung của PD và EQ

PD vuông góc với EQ

Do đó: PEDQ là hình thoi

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K