Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) CM: ΔABI = ΔMCI
Xét ΔABI và ΔMCI có:
IM=AI (gt)
∠I1=∠I2 (đđ)
BI=IC (gt)
=> ΔABI = ΔMCI (c.g.c) (ĐPCM)
Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath
c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE
=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE
=> \(\Delta\)ABE cân tại B
=> AB = BE
d) Ta có: SN vuông AH ; BC vuông AH
=> SN //BC
=> NK //MC
=> ^KNI = ^MCI
mặt khác có: NK = MC ; IN = IC ( gt)
=> \(\Delta\)NIK = \(\Delta\)CIM
=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o
=> ^CIM + ^KIC = 180o
=> ^KIM = 180o
=>M; I ; K thẳng hàng
a: Xét ΔABM và ΔECM có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔABM=ΔECM
b: ΔABM=ΔECM
=>AB=EC và góc ABM=góc ECM
=>AB//EC
c: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
nên ABEC là hình bình hành
=>AC//BE
a: Xét ΔMAB và ΔMEC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔMAB=ΔMEC
b: ΔMAB=ΔMEC
=>góc MAB=góc MEC
=>AB//CE
c: Xét ΔMHA vuông tại H và ΔMKE vuông tại K có
MA=ME
góc HAM=góc KEA
=>ΔMHA=ΔMKE
=>MH=MK
=>M là trung điểm của HK