K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

|a-c|<3;|b-c|<2 CMR:|a-b|<5

9 tháng 5 2017

a)

Xét \(\Delta BHE\) và \(\Delta CHF\) có:

\(\widehat{B}=\widehat{C}\left(gt\right)\)

\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)

\(HB=HC\)( trong tam giác cân, đường cao cũng là đường trung tuyến)

\(\Rightarrow\Delta BHE=\Delta CHF\left(g.c.g\right)\)

\(\RightarrowĐpcm\)

30 tháng 4 2017

bài này mình làm rồi nhé bạn.Để mình chỉ cho bạn nha

A B C D E K H I

1)Xét tam giác BAE và tam giác BKE:

     BEA = BEK = 90 độ

     BE chung

     ABE = KBE ( BE là phân giác của B )

=> Tam giác BAE = Tam giác BKE( g-c-g)

=> BA = BK( 2 cạnh tương ứng)

=> Tam giác ABK cân ở B

2)Xét tam giác ABD và tam giác KBD:

      BA = BK ( cm trên)

      ABD =  KBD ( BD là phân giác của B)

      BD chung

=> Tam giác ABD = Tam giác KBD ( c-g-c)

=> BAD = BKD = 90 độ

=>KDB = KDC = 90 độ

=> KD vuông góc với BC

3) Ta thấy :  BAD + ADB + DBA = 180 độ

=> ADB + DBA = 90 độ  (1)

Mà AIE = BIH ( 2 góc đối đỉnh)

Mà BIH + IHB +HBI = 180 độ

=> BIH + HBI = 90 độ (2)

Mà DBA = HBI ( BD là phân giác của B )   (3)

Từ (1),(2) và (3) => AID = ADI (4)

=> Tam giác DAI cân ở A

=> AI = AD

 Xét tam giác vuông IAE (vuông ở E) và tam giác vuông DAE( vuông ở E)

       AI = AD

       AE chung

=> tam giác IAE = tam giác DAE(ch-cgv)

=> DAE = IAE ( 2 góc tương ứng)

=> AE là phân giác IAD

=> AK là phân giác HAC

4) Xét tam giác IAE và tam giác KAE:

     AEI = KEI

     EI chung

      AE=EK(2 cạnh tương ứng)

=> Tam giác IAE = Tam giác KAE 

=> AIE = KIE ( 2 góc tương ứng)   (5)

Từ (4) và (5) =>KIE = EAD

Mà 2 góc này ở vị trí so le trong

=> IK song song với AC

Mình làm bài này là để bạn hiểu nha ko hiểu thì nói mình

(Dấu gạch ngang trên đầu thay cho dấu góc)

HUHUHUHU....... Lúc làm bài kiểm tra chưa nghĩ ra,h mới nghĩ ra

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABC}\), H∈BC)

Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)

b) Ta có: ΔABC vuông tại A(gt)

\(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0=30^0\)

Ta có: BE là tia phân giác của \(\widehat{ABC}\)(gt)

\(\Rightarrow\widehat{ABE}=\widehat{CBE}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0\)

Xét ΔEBC có \(\widehat{ECB}=\widehat{EBC}\left(=30^0\right)\)

nên ΔEBC cân tại E(định lí đảo của tam giác cân)

⇒EB=EC

Xét ΔEBH vuông tại H và ΔECH vuông tại H có

EB=EC(cmt)

EH chung

Do đó: ΔEBH=ΔECH(cạnh huyền-cạnh góc vuông)

⇒HB=HC(hai cạnh tương ứng)

c) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE(EA và EC là hai tia đối nhau)

nên \(\widehat{BEC}=\widehat{BAE}+\widehat{ABE}\)(định lí góc ngoài của tam giác)

\(\Rightarrow\widehat{BEC}=90^0+30^0=120^0\)

Ta có: ΔEBH=ΔECH(cmt)

\(\widehat{BEH}=\widehat{CEH}\)(hai góc tương ứng)

\(\widehat{BEH}+\widehat{CEH}=\widehat{BEC}\)(tia EH nằm giữa hai tia EB,EC)

nên \(\widehat{BEH}=\widehat{CEH}=\frac{\widehat{BEC}}{2}=\frac{120^0}{2}=60^0\)

\(\Leftrightarrow\widehat{KEH}=60^0\)

Ta có: HK//BE(gt)

\(\widehat{BEH}=\widehat{KHE}\)(hai góc so le trong)

\(\widehat{BEH}=60^0\)(cmt)

nên \(\widehat{KHE}=60^0\)

Xét ΔKHE có

\(\widehat{KEH}=60^0\)(cmt)

\(\widehat{KHE}=60^0\)(cmt)

Do đó: ΔKHE đều(dấu hiệu nhận biết tam giác đều)

d) Xét ΔAEI vuông tại A có EI là cạnh huyền(EI là cạnh đối diện với \(\widehat{EAI}=90^0\))

nên EI là cạnh lớn nhất trong ΔAEI(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)

hay EI>EA

mà EA=EH(ΔBAE=ΔBHE)

nên IE>EH(đpcm)