K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2020

a)

Ta có: góc B + góc C = 90 độ 

Mà góc B = 50 độ

\(\Rightarrow\) góc C = 90 độ - 50 độ = 40 độ

b)

Xét Δ ABD và Δ EBD có:

AB = EB (gt)

góc ABD = góc EBD (gt)

chung BD

\(\Rightarrow\) Δ ABD = Δ EBD (c-g-c)

c)

Vì Δ ABD = Δ EBD (câu b)

\(\Rightarrow\) góc BAD = góc BED

Mà góc BAD = 90 độ nên góc BED = 90 độ

\(\Rightarrow\)DE \(\perp\) BC

d)

Vì Δ ABD = Δ EBD (câu b)

\(\Rightarrow\) AD = ED

Xét Δ ADK và Δ EDC có:

góc DAK = góc DEC = 90 độ

AD = ED (cmt)

góc ADK = góc EDC (đ²)

\(\Rightarrow\) Δ ADK = Δ EDC (cgv - gn)

\(\Rightarrow\) DK = DC và AK = EC ( 2 cạnh tương ứng )

e)

Ta có:

BA = BE (gt)

AK = EC (câu d)

\(\Rightarrow\) BA + AK = BE + EC \(\Rightarrow\) BK = BC \(\Leftrightarrow\) Δ BKC cân tại B (định nghĩa)

Mà BD là phân giác góc CBK

\(\Rightarrow\) BD vừa là phân giác vừa là đường cao của Δ BKC

\(\Rightarrow\) BD ⊥ CK

#Tiểu Cừu

4 tháng 8 2020

A B C D E k 1 2 O

a) XÉT  \(\Delta ABD\)VÀ \(\Delta EBD\)

BD LÀ CẠNH CHUNG

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

AB = BE (GT)

=> \(\Delta ABD\)=\(\Delta EBD\)(C-G-C)

C)  VÌ  \(\Delta ABD\)=\(\Delta EBD\)(CMT)

=> \(\widehat{BAD}=\widehat{BED}=90^o\)

=> DE VUÔNG GÓC VỚI BC (ĐPCM )

D) vì \(\Delta ABD\)=\(\Delta EBD\)(CMT )

=> AD = ED ( HAI CẠNH TƯƠNG ỨNG )

XÉT \(\Delta ADK\)VÀ \(\Delta EDC\)CÓ 

\(\widehat{KAD}=\widehat{CED}=90^o\)

AD = ED (CMT)

\(\widehat{ADK}=\widehat{EDC}\left(Đ^2\right)\)

=> \(\Delta ADK\)=\(\Delta ADK\)(G-C-G)

=> DK = DC (ĐPCM) 

=> AK = EC (ĐPCM)

e ) vì \(\Delta ABD\)=\(\Delta EBD\)(CMT)

=>\(\widehat{ADB}=\widehat{EDB}\)

TA CÓ 

\(\widehat{ADB}=\widehat{D_1}\)(ĐỐI DỈNH)

\(\widehat{EDB}=\widehat{D_2}\)(ĐỐI ĐỈNH)

MÀ  \(\widehat{ADB}=\widehat{EDB}\)

=> \(\widehat{D_1}=\widehat{D_2}\)

GỌI O LÀ GIAO ĐIỂM CỦA BD LÀ KC

XÉT \(\Delta KDO\)VÀ \(\Delta CDO\)CÓ 

\(KD=CD\left(cmt\right)\)

\(\widehat{D_1}=\widehat{D_2}\)(CMT)

DO LÀ CẠNH CHUNG

=> \(\Delta KDO\)=\(\Delta CDO\)(C-G-C)

=> \(\widehat{KOD}=\widehat{COD}\)

MÀ HAI GÓC NÀY KỀ BÙ

\(\Rightarrow\widehat{KOD}=\widehat{COD}=\frac{180^o}{2}=90^o\)

\(\Rightarrow BD\perp CK\left(đpcm\right)\)

25 tháng 7 2018

A B C D E K

p/s:  do bạn chỉ cần hình nên mk chỉ vẽ hình thôi đó, hk tốt

13 tháng 12 2021

undefined

17 tháng 12 2020

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

12 tháng 12 2016

A B C E F D

a, Số đo góc ABC la : 

goc A+goc B+goc C=180

130+C=180

C=50

=> số đo góc ABD là : goc ABD=1/2gocC=>25

b, Xet 2 tam giac ABD va BDE

Co:AB=BE

goc ABD=goc DBE (250)

BD canh chung =>dpcm

13 tháng 12 2016

mình biết làm mấy câu đầu rồi, mình chỉ bí câu cuối thôi