K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2020

Hình bạn tự vẽ nhé!

Bài làm:

Vì tam giác ABC vuông tại A nên theo định lý Py-ta-go, ta có:
\(AB^2+AC^2=BC^2\)\(\Leftrightarrow BC^2-AB^2=AC^2\Leftrightarrow9^2-4^2=AC^2\)

\(\Leftrightarrow AC^2=65\Leftrightarrow AC=\sqrt{65}\)(cm)

\(\Delta AHB\)đồng dang với \(\Delta CAB\)(g.g) vì:

\(\hept{\begin{cases}\widehat{ABC}chung\\\widehat{AHB}=\widehat{BAC}=90^0\end{cases}}\)

=> \(\frac{AB}{AH}=\frac{BC}{CA}\)

\(\Leftrightarrow AH=\frac{AB.CA}{BC}=\frac{4\sqrt{65}}{9}\)(cm)

Vậy \(AH=\frac{4\sqrt{65}}{9}\left(cm\right)\)

Học tốt!!!!

7 tháng 6 2020

Lại không vẽ được hình =((

Áp dụng định lý Pythagoras cho tam giác ABC vuông tại A có :

\(BC^2=AB^2+AC^2\)

\(< =>BC=\sqrt{AB^2+AC^2}\)

\(< =>9=\sqrt{16+AC^2}\)

\(< =>16+AC^2=81\)

\(< =>AC^2=81-16=65\)

\(< =>AC=\sqrt{65}\)

Theo hệ thức lượng trong tam giác vuông ta có :

\(AB.AC=AH.BC\)

\(< =>4\sqrt{65}=9AH\)

\(< =>AH=\frac{4\sqrt{65}}{9}\)

Vậy \(AH=\frac{4\sqrt{65}}{9}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow AB^2=4\cdot9=36\)

hay AB=6(cm)

Vậy: AB=6cm

AH=15*20/25=300/25=12(cm)

1 tháng 4 2023

AH=15*20/25=300/25=12(cm)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

10 tháng 9 2021

* Tính AH:

  Xét tam giác ABC vuông tại A có đường cao AH.

Ta có: AH= BH.CH

          AH2 = 4.9

          AH2 = 36

         AH = \(\sqrt{36}=6\)

 

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

c: góc AED=góc BEH=90 độ-góc EBH

góc ADE=90 độ-góc ABD

góc EBH=góc ABD

=>góc AED=góc ADE

=>AE=AD

31 tháng 3 2022

a, Xét ΔHBA và ΔABC có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)

\(\Rightarrow AB.AC=BC.AH\)

b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)

hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)

\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)