Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow AB^2=4\cdot9=36\)
hay AB=6(cm)
Vậy: AB=6cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
c: góc AED=góc BEH=90 độ-góc EBH
góc ADE=90 độ-góc ABD
góc EBH=góc ABD
=>góc AED=góc ADE
=>AE=AD
a, Xét ΔHBA và ΔABC có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
\(\Rightarrow AB.AC=BC.AH\)
b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)
Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)
\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)
Hình bạn tự vẽ nhé!
Bài làm:
Vì tam giác ABC vuông tại A nên theo định lý Py-ta-go, ta có:
\(AB^2+AC^2=BC^2\)\(\Leftrightarrow BC^2-AB^2=AC^2\Leftrightarrow9^2-4^2=AC^2\)
\(\Leftrightarrow AC^2=65\Leftrightarrow AC=\sqrt{65}\)(cm)
\(\Delta AHB\)đồng dang với \(\Delta CAB\)(g.g) vì:
\(\hept{\begin{cases}\widehat{ABC}chung\\\widehat{AHB}=\widehat{BAC}=90^0\end{cases}}\)
=> \(\frac{AB}{AH}=\frac{BC}{CA}\)
\(\Leftrightarrow AH=\frac{AB.CA}{BC}=\frac{4\sqrt{65}}{9}\)(cm)
Vậy \(AH=\frac{4\sqrt{65}}{9}\left(cm\right)\)
Học tốt!!!!
Lại không vẽ được hình =((
Áp dụng định lý Pythagoras cho tam giác ABC vuông tại A có :
\(BC^2=AB^2+AC^2\)
\(< =>BC=\sqrt{AB^2+AC^2}\)
\(< =>9=\sqrt{16+AC^2}\)
\(< =>16+AC^2=81\)
\(< =>AC^2=81-16=65\)
\(< =>AC=\sqrt{65}\)
Theo hệ thức lượng trong tam giác vuông ta có :
\(AB.AC=AH.BC\)
\(< =>4\sqrt{65}=9AH\)
\(< =>AH=\frac{4\sqrt{65}}{9}\)
Vậy \(AH=\frac{4\sqrt{65}}{9}\left(cm\right)\)