Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Xét ΔEDC vuông tại E và ΔHDA vuông tại H có
góc EDC=góc HDA
=>ΔEDC đồng dạng với ΔHDA
=>DE/DH=DC/DA=EC/HA
=>DC*HA=DA*EC
c: DE/DH=DC/DA
=>DE/DC=DH/DA
=>ΔDEH đồng dạng với ΔDCA
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
b: Xét ΔAHD vuông tại H và ΔCED vuông tại E có
\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)
Do đó: ΔAHD~ΔCED
=>\(\dfrac{AH}{CE}=\dfrac{DA}{DC}\)
=>\(AH\cdot DC=CE\cdot AD\)
c: Ta có: ΔAHD~ΔCED
=>\(\dfrac{DA}{DC}=\dfrac{DH}{DE}\)
=>\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)
Xét ΔDAC và ΔDHE có
\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)
\(\widehat{ADC}=\widehat{HDE}\)(hai góc đối đỉnh)
Do đó: ΔDAC~ΔDHE
d: Xét ΔCAF có
AE,CH là các đường cao
AE cắt CH tại D
Do đó: D là trực tâm của ΔCAF
=>DF\(\perp\)AC
mà AB\(\perp\)AC
nên DF//AB
Xét ΔHDF vuông tại H và ΔHBA vuông tại H có
HD=HB
\(\widehat{HDF}=\widehat{HBA}\)(hai góc so le trong, DF//AB)
Do đó: ΔHDF=ΔHBA
=>HF=HA
=>H là trung điểm của AF
Xét tứ giác ABFD có
H là trung điểm chung của AF và BD
=>ABFD là hình bình hành
Hình bình hành ABFD có AF\(\perp\)BD
nên ABFD là hình thoi
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Đề sai rồi bạn
c, Theo phần b có , tgiac AHD đồng dạng tgiac CED
=? HD/ED = AD/CD
Xét tgiac HDE và tgiac ADC, có:
góc HDE = góc ADC ( 2 góc đối đỉnh)
HD/ED = AD/ CD (cmt)
=> tg HDE đồng dậng tg ADC ( c.g.c)
d, Áp dụng định lý Pytago vào tg ABC , có:
BC^2 = AB^2 + AC^2 = 6^2 + 8^2
=>BC = 10 (cm)
Có : BA^2 = BH. BC
=> BH = 3,6 = HD
=> BD = 2BH = 7,2(cm)
=> DC = BC - BD = 2,8 (cm)
Chứng minh tgiac AHB = tg AHD (c.g.c)
=> AD = AB = 6 (cm)
theo phần b, tg CDE đồng dạng th ADH
=> Dc/DA = DE/DH
=> DE = 1,68
Áp dụng đính lý pytagp vào tg CED
=> DC^2 = EC^2 + De^2
=> EC = 2,24
=> Diện tích tam giác CED = 1/2 . DE .EC = 1,8816 (cm^2)
Bài làm
Mik nghĩ bbạn thiếu đề là AH đường cao, còn đúng hay sai thì mình không chắc vì nếu AH không là đường cao sẽ không làm được bài,
a) Xét tam giác ABC và tam giác HBA có:
\(\widehat{AHB}=\widehat{BAC}=90^0\)
\(\widehat{ABC}\)chung
=> Tam giác ABC ~ Tam giác HBA ( g - g )
b) Xét tam giác AHD và tam giác CED có:
\(\widehat{AHD}=\widehat{CED}=90^0\)
\(\widehat{HDA}=\widehat{EDC}\)( hai góc đối đỉnh )
=> Tam giác AHD ~ Tam giác CED ( g - g )
=> \(\frac{AH}{EC}=\frac{AD}{DC}\)
\(\Rightarrow AH.CD=AD.EC\)( đpcm )
c) Vì tam giác AHD ~ Tam giác CED ( cmt )
=> \(\frac{HD}{DE}=\frac{AD}{DC}\)
Xét tam giác HDE và tam giác ADC có:
\(\frac{HD}{DE}=\frac{AD}{DC}\)( cmt )
\(\widehat{HDE}=\widehat{ADC}\)( hai góc đối đỉnh )
=> Tam giác HDE ~ tam giác ADC ( g - c - g )
d) Xét tam giác ABC vuông ở A có:
Theo Pytago có:
BC2 = AB2 + AC2
hay BC2 = 62 + 82
=> BC2 = 36 + 64
=> BC2 = 100
=> BC = 10 ( cm )
Diện tích tam giác ABC là:
SABC = 1/2 . AB . AC
SABC = 1/2 . AH . BC
=> AB . AC = AH . BC
hay 6 . 8 = AH . 10
=> AH = 4,8 ( cm )
Xét tam giác AHC vuông ở H có:
Theo pytago có:
HC2 = AC2 - AH2
hay HC2 = 82 - 4,82
=> HC2 = 64 - 23,04
=> HC = 6,4 ( cm )
Ta có: BH + HD + DC = BC
=> HD + HD + DC = BC
=> 2HD + HC - HD = BC
Hay 2HD + 6,4 - HD = 10
=> HD + 6,4 =10
=> HD = 3,6 ( cm )
Ta có: HD + DC = HC
hay 3,6 + DC = 6,4
=> DC = 2,8
Vì D đối xứng với B qua H
=> AH là trung trực của DB
=> AB = AD
=> Tam giác ABD cân tại A
=> AB = AD = 6 cm
vì tam giác AHD ~ tam giác CED ( theo câu b )
=> \(\frac{HD}{DE}=\frac{AH}{EC}=\frac{AD}{DC}\)
hay \(\frac{3,6}{DE}=\frac{4,8}{EC}=\frac{6}{2,8}\)
=> EC = 4,8 . 2,8 : 6 = 2,24 ( cm )
=> DE = 3,6 . 2,24 : 4,8 = 1,68 ( cm )
Diện tích tam giác DEC là:
SDEC = 1/2 . EC . DE = 1/2 . 2,24 . 1,68 = 1,8816 ( cm2 )
e) CHo mình xin nghỉ.