K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
10 tháng 8 2020
Cho tam giác ABC vuông tại A( AB<AC ), có đường cao AH, trung tuyến AM Gọi E và F lần lượt la hình chiếu của H lên AB và AC; I và K lần lượt là trung điểm của HB và HC. CM :
30 tháng 1 2022
1: Xét ΔABH vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
2: \(AE\cdot AB+AF\cdot AC=AH^2+AH^2=2AH^2\)
4: \(4\cdot OE\cdot OF=2OE\cdot2OF=FE\cdot AH=AH^2\)
\(HB\cdot HC=AH^2\)
Do đó: \(4\cdot OE\cdot OF=HB\cdot HC\)