K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

tự vẽ hình

a)  Áp dụng Pytago ta có:

AB2 + AC2 = BC2

=>  BC2 = 152 + 202 = 625

=>  BC = 25

Áp dụng tính chất đường phân giác ta có:

\(\frac{AD}{AB}=\frac{DC}{BC}=\frac{AD+DC}{AB+BC}=\frac{20}{40}=\frac{1}{2}\)

suy ra:  AD/AB = 1/2    =>   AD = 7,5

b)  dễ chứng minh đc tam giác BHA ~ tam giác BAC  (g.g)

=>  \(\frac{BH}{BA}=\frac{HA}{AC}=\frac{AB}{CB}=\frac{15}{25}=\frac{3}{5}\)

suy ra:  \(\frac{AH}{AC}=\frac{3}{5}\)=>  AH = 12

             \(\frac{HB}{AB}=\frac{3}{5}\)=>  HB = 9

19 tháng 8 2018

c)  điểm I ở đâu vậy bạn

bạn ktra lại đề nhé

học tốt

_^.^_

a: BC=25cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)

Do đó: AD=7,5cm; CD=12,5(cm)

b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc ABD=góc DBC

nên góc ADI=góc AID

hay ΔAID cân tại A

Sửa đề: đường cao BD

a: Xét ΔADB vuông tại D và ΔABC vuông tại B có

góc A chung

=>ΔADB đồng dạng với ΔABC

b: \(AC=\sqrt{15^2+20^2}=25\left(cm\right)\)

AD=15^2/25=9cm

=>CD=16cm

Bài 1:

Xét ΔABC có AD là phân giác

nen AB/BD=AC/CD

=>AB/3=AC/4

Đặt AB/3=AC/4=k

=>AB=3k; AC=4k

Ta có: \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow25k^2=35^2\)

=>k2=49

=>k=7

=>AB=21cm; AC=28cm

a: BC=25cm

b: Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)

Do đó: AD=7,5cm; CD=12,5(cm)

b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc ABD=góc DBC

nên góc ADI=góc AID

hay ΔAID cân tại A

 

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ sốbằng nhau, ta được:

AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A

24 tháng 4 2022

ai giúp mình với ạ:( ko phải làm câu a đâu ạ

 

 

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ sốbằng nhau, ta được:

AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A

18 tháng 5 2021

ez

 

a: BC=10cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ sốbằng nhau, ta được:

AD/3=CD/5=(AD+CD)/(3+5)=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

Do đó:ΔBAD đồng dạng với ΔBHI

Suy ra: BA/BH=BD/BI

hay \(BA\cdot BI=BH\cdot BD\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

hay ΔAID cân tại A

a: BC=25cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)

Do đó: AD=7,5cm; CD=12,5(cm)

b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)

d: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc ABD=góc DBC

nên góc ADI=góc AID

hay ΔAID cân tại A