K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

Đường tròn c: Đường tròn qua B với tâm I Đường tròn c_1: Đường tròn qua B_1 với tâm I_1 Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, A] Đoạn thẳng j: Đoạn thẳng [B, C] Đoạn thẳng h_1: Đoạn thẳng [B_1, A_1] Đoạn thẳng i_1: Đoạn thẳng [C_1, A_1] Đoạn thẳng j_1: Đoạn thẳng [B_1, C_1] A = (-2.5, 0.82) A = (-2.5, 0.82) A = (-2.5, 0.82) C = (4.54, 0.72) C = (4.54, 0.72) C = (4.54, 0.72) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm D: Điểm trên i Điểm D: Điểm trên i Điểm I: Giao điểm của k, l Điểm I: Giao điểm của k, l Điểm I: Giao điểm của k, l A_1 = (8.28, 0.89) A_1 = (8.28, 0.89) A_1 = (8.28, 0.89) A_1 = (8.28, 0.89) C_1 = (15.32, 0.79) C_1 = (15.32, 0.79) C_1 = (15.32, 0.79) C_1 = (15.32, 0.79) Điểm B_1: Điểm trên g_1 Điểm B_1: Điểm trên g_1 Điểm B_1: Điểm trên g_1 Điểm B_1: Điểm trên g_1 Điểm D_1: Điểm trên i_1 Điểm D_1: Điểm trên i_1 Điểm I_1: Giao điểm của k_1, l_1 Điểm I_1: Giao điểm của k_1, l_1 Điểm I_1: Giao điểm của k_1, l_1 Điểm I_1: Giao điểm của k_1, l_1

Em xem lại đề bài nhé. Với bài toán này, đường trong tâm I không là duy nhất.

19 tháng 6 2021

a) Ta có: \(\angle BQI+\angle BPI=90+90=180\Rightarrow BPIQ\) nội tiếp

Ta có: \(\angle BPI+\angle BAI=90+90=180\Rightarrow BPIA\) nội tiếp

\(\Rightarrow B,P,I,Q,A\) cùng thuộc 1 đường tròn

b) Ta có: \(\angle KAF=\angle PAC=\angle PQI=\angle IPQ\) (\(\Delta IPQ\) cân tại I) \(=\angle KAQ\)

\(\Rightarrow AK\) là phân giác \(\angle QAF\Rightarrow\dfrac{AF}{AQ}=\dfrac{KF}{KQ}\)

Vì AK là phân giác trong \(\angle QAF\) mà \(AK\bot AB\) 

\(\Rightarrow AB\) là phân giác ngoài \(\angle QAF\) 

\(\Rightarrow\dfrac{BF}{BQ}=\dfrac{AF}{AQ}=\dfrac{KF}{KQ}\Rightarrow BF.KQ=KF.BQ\)

undefined

7 tháng 11 2021

a) Tam giác ABC nội tiếp đường tròn (O) đường kính BC

=> OA=OB=OC và O là trung điểm của BC

=> Tam giác ABC vuông tại A

=> góc BAC = 90 độ

b) DO tam giác HAK nội tiếp đường tròn (I) 

Lại có góc HAK = 90 độ

=> HK là đường kính của (I)

=> HK đi qua I

=> H,I,K thẳng hàng

c) Đề bài ghi ko rõ

d) 3 điểm nào?

31 tháng 1 2022

tính : \(BC=5.AH=\dfrac{12}{5}\)

+ gọi K là tâm của đường tròn ngoại tiếp ΔBMN .Khi đó , KI là đường trung trực của đoạn MN

Do 2 ΔAID và AOH đồng dạng nên => góc ADI = góc AOH = 90\(^o\)

=> OA ⊥ MN

do vậy : KI//OA

+ do tứ giác BMNC nội tiếp nên OK⊥BC . Do đó AH// KO

+ dẫn đến tứ giác AOKI là hình bình hành.

Bán kính:

\(R=KB=\sqrt{KO^2+OB^2}=\sqrt{AI^2+\dfrac{1}{4}BC^2}=\sqrt{\dfrac{1}{4}AH^2+\dfrac{1}{4}BC^2=\sqrt{\dfrac{769}{10}}}\)

31 tháng 1 2022

thank

a: ΔBAD cân tại B

mà BH là đường cao

nên BH là phân giác của góc ABD

XétΔCAB và ΔCDB có

BA=BD

\(\widehat{ABC}=\widehat{DBC}\)

BC chung

Do đó: ΔCAB=ΔCDB

=>\(\widehat{CAB}=\widehat{CDB}=90^0\)

=>CD là tiếp tuyến của (B;BA)

b: I đối xứng B qua AH

=>AH là đường trung trực của BI

=>AH\(\perp\)BI tại trung điểm của BI

mà AH\(\perp\)BC

và BC,BI có điểm chung là B

nên B,I,C thẳng hàng

AH\(\perp\)BI tại trung điểm của BI

=>AH\(\perp\)BC tại trung điểm của BI

mà AH\(\perp\)BC tại H

nên H là trung điểm của BI

ΔBAD cân tại B

mà BH là đường cao

nên H là trung điểm của AD

Xét tứ giác ABDI có

H là trung điểm chung của AD và BI

nên ABDI là hình bình hành

Hình bình hành ABDI có BA=BD

nên ABDI là hình thoi

=>ID//AB

mà AB\(\perp\)AC

nên ID\(\perp\)AC

Xét ΔCAD có

CH,DI là đường cao

CH cắt DI tại I

Do đó: I là trực tâm của ΔCAD

=>AI\(\perp\)CD tại E

Gọi K là trung điểm của AC
=>K là tâm của đường tròn đường kính AC

Xét tứ giác AHEC có \(\widehat{AHC}=\widehat{AEC}=90^0\)

nên AHEC là tứ giác nội tiếp đường tròn đường kính AC

=>A,H,E,C cùng thuộc đường tròn tâm K, đường kính AC

Xét (K) có

AC là đường kính

AB\(\perp\)AC tại A

Do đó: AB là tiếp tuyến của (K)