K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

A B C D E H K

20 tháng 3 2021
Chúc hok tốt!!!! Bài này hình như ko cần sử dụng kiến thức kì II cx lm đc đk????

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

1 tháng 2 2019

Nhớ Bấm Đọc Típ Nha!

1 tháng 2 2019

bài này khó đó

A B C D F H K

2 tháng 11 2017

a) Chứng minh  D E A ^ = 180 0

b) Chứng minh

A I M ^ = A K M ^ = I A K ^ = 90 0

c) Chứng minh DDME có  E D M ^ = D E M ^ = 45 0

Þ DDME vuông cân ở M.

a: góc DAE=góc DAB+góc BAC+góc EAC

=45+90+45=180 độ

=>D,A,E thẳng hàng

b: ΔABC vuông tại A có AM là trung tuyến

nên MA=MB=MC

MA=MB

DA=DB

=>MD là trung trực của AB

=>MD vuông góc AB tại I

MA=MC

EA=EC

=>ME là trung trực của AC

=>ME vuông góc AC tại K

Xét tứ giác AIMK có

góc AIM=góc AKM=góc KAI=90 độ

=>AIMK là hình chữ nhật

 

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.