Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VÌ AM LÀ ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN
SUY RA AM=1/2*BC=1/2*10=5 CM
XÉT TAM GIÁC AHM VUÔNG TẠI H[VÌ AH LÀ ĐƯỜNG CAO]
SUY RA MH^2=AM^2-AH^2[PI TA GO]
MH^2=5^2-4,8^2
MH^2=1,96
MH=1,4
LẠI CÓ
BH=BM+MH=1/2*BC+1,4=5+1,4=6,4[CM]
TA CÓ:
CH=CM-MH=1/2BC-MH=5-1,4=3,6
TAM GIÁC ABH
AB^2=BH^2+AH^2
SUY RA AB^2=6,4^2+4,8^2=64 AB=8[CM]
TAM GIÁC ABC
AC^2=BC^2-AB^2
AC^2=10^2-8^2=36 AC=6[CM]
*) Do \(AB>AC\Leftrightarrow BH>HC\)
Xét tam giác ABC vuông tại A, ta có:
\(AH^2=BH.HC\Leftrightarrow AH^2-BH\left(25-BH\right)=0\)
\(\Leftrightarrow12^2-25BH+BH^2=0\)
\(\Leftrightarrow156,25-25BH+BH^2=12,25\)
\(\Leftrightarrow\left(12,5-BH\right)^2=12,25\)
\(\Leftrightarrow\left[{}\begin{matrix}12,25-BH=3,5\\12,25-BH=-3,5\end{matrix}\right.\)
\(\Leftrightarrow BH\in\left\{9;16\right\}\Rightarrow HC\in\left\{16;9\right\}\)
Mà do \(BH>HC\Rightarrow BH=16;HC=9\)
Xét tam giác BHA vuông tại A => \(BH^2+AH^2=AB^2\Leftrightarrow AB=\sqrt{16^2+12^2}=20\)
Xét tam giác ABC vuông tại A \(\Rightarrow BC.AH=AB.AC\Leftrightarrow AC=\dfrac{BC.AH}{AB}\Leftrightarrow AC=15\)
Do tam giác ABC vuông tại A \(\Rightarrow AM=\dfrac{BC}{2}=\dfrac{25}{2}=12,5\)
Ta có: \(HM=MC-HC\Leftrightarrow HM=\dfrac{25}{2}-9=3,5\)
a)AB=6cm,BC=10cm
∆ABC vuông tại A đg cao AH có
#\(AC^2=BC^2-AB^2\)
AC2=100-36=64
AC=8cm
# \(AB^2=BH.BC\)
36=BH.10
BH=3,6cm
# CH=BC-BH=10-3,6=6,4cm
# \(AH^2=BH.CH\)
AH2=3,6.6,4=23,04
AH=4,8cm
b)
∆ABC vuông tại A đg cao AH có
#\(AB^2=BC^2-AC^2\)
AB2=625-400=225
AB=15cm
# \(AB^2=BH.BC\)
225=BH.25
BH=9cm
# CH= BC-BH=25-9=16cm
# \(AH.BC=AB.AC\)
AH.25=15.20=300
AH=12cm
a) Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (ĐL Py-ta-go)
AB2 = 152 + 252
AB2 = 225 + 625
AB2 = 850
AB = \(\sqrt{850}\)(cm)
Xét tam giác ABC vuông tại A, có đường cao AH:
=> BA2 = BH.BC
850 = 25.BC
BC = 850:25
BC = 34
Xét tam giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
342 = 850 + AC2
1156 - 850 = AC2
AC2 = 306
AC = \(\sqrt{306}\)(cm)
Ta có BC = BH + HC
34 = 25 + HC
HC = 34 - 25
HC = 9
b) Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (ĐL Py-ta-go)
122 = AH2 + 62
144 = AH2 + 36
AH2 = 144 - 36
AH2 = 108
AH = \(\sqrt{108}\)(cm)
Xét tam giác ABC vuông tại A, có đường cao AH:
=> BA2 = BH.BC
122 = 6.BC
144 = 6.BC
BC = 144:6
BC = 24 (cm)
Ta có BC = BH + HC
24 = 6 + HC
HC = 24 - 6
HC = 18
Xét tam giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2 (ĐL Py-ta-go)
242 = 122 + AC2
AC2 = 242 - 122
AC2 = 576 - 144
AC2 = 432
AC = \(\sqrt{432}\)(cm)
a: Đặt BH=x, CH=y
Theo đề, ta có: xy=4,82=23,04 và x+y=10
=>x và y là hai nghiệm của pt là:
\(x^2-10x+23.04=0\)
=>x=3,6 hoặc x=6,4
=>(BH;CH)=(3,6;6,4) hoặc(BH;CH)=(6,4;3,6)
TH1: BH=3,6cm; CH=6,4cm
\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
AM=BC/2=5cm
\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)
\(AC=\sqrt{6.4\cdot10}=8\left(cm\right)\)
TH2:
CH=3,6cm; BH=6,4cm
\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
AM=BC/2=5cm
\(AC=\sqrt{3.6\cdot10}=6\left(cm\right)\)
\(AB=\sqrt{6.4\cdot10}=8\left(cm\right)\)
b: Đặt BH=a; CH=b
Theo đề, ta có: ab=144 và a+b=25
=>a,b là các nghiệm của pt là:
\(x^2-25x+144=0\)
=>x=9 hoặc x=16
TH1: BH=9cm; CH=16cm
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
AM=BC/2=25/2=12,5(cm)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)
TH2:CH=9cm; BH=16cm
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
AM=BC/2=25/2=12,5(cm)
\(AC=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AB=\sqrt{16\cdot25}=20\left(cm\right)\)