Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của BC
I là trung điểm của AC
Do đó: MI là đường trung bình của ΔABC
Suy ra: MI//AB
hay MI\(\perp\)AC
Xét ΔCIM vuông tại I và ΔAID vuông tại I có
IC=IA
\(\widehat{ICM}=\widehat{IAD}\)
Do đó: ΔCIM=ΔAID
Suy ra: IM=ID
hay I là trung điểm của MD
Xét tứ giác AMCD có
I là trung điểm của MD
I là trung điểm của AC
Do đó: AMCD là hình bình hành
mà MD\(\perp\)AC
nên AMCD là hình thoi
a: Xét tứ giác AEBM có
D la trung điểm chung của AB và EM
MA=MB
Do đó: AEBM là hình thoi
b: Xét tứ giác AEMC có
AE//MC
AE=MC
Do đó: AEMC là hình bình hành
=>AM cắt EC tại trung điểm của mỗi đường
=>E,I,C thẳng hàng
c: Để AEBM là hình vuông thì góc AMB=90 độ
=>AM vuông góc với BC
=>ΔABC cân tại A
a: Xét tứ giác AEBM co
D là trung điểm chung của AB và ME
MA=MB
DO đó: AEBM là hình thoi
b: Xét tứ giác AEMC có
AE//MC
AE=MC
Do đó: AEMC là hình bình hành
=>AM cắt EC tại trung điểm của mỗi đường
=>E,I,C thẳng hàng
c: Để AEBM là hình vuông thì góc AMB=90 độ
=>AM vuông góc với BC
=>ΔABC cân tại A
=>AB=AC