K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

A B C H D I K I E

a) Xét \(\Delta ADI\)và \(\Delta AHI\),ta có:

-AD=AH (GT)

AI chung

DI = HI (GT- I là trung điểm HD )

=> \(\Delta ADI=\Delta AHI\left(c.c.c\right)\)

b) từ a, suy ra \(\widehat{HAI}=\widehat{DAI}\)hay \(\widehat{HAK}=\widehat{DAK}\)

Xét \(\Delta AHK\)và \(\Delta ADK\), ta có:

AH = AD (gt)

\(\widehat{HAK}=\widehat{DAK}\)( chứng minh trên)

AK chung

=> \(\Delta AHK=\Delta ADK\left(c.g.c\right)\)

=> \(\widehat{ADK}=\widehat{AHK}=90^o\)

=> \(DK\perp AC\)

mà \(AB\perp AC\)

=> DK // AB (1)

c, nối E với D

- Xét \(\Delta ADE\)và \(\Delta AHC\), ta có:

AD=AH(gt)

\(\widehat{DAE}=\widehat{HAC}\)( chung góc A)

AE = AC ( vì AH=AD, HE= DC=> AH+HE = AD+DC => AE=AC)

=>\(\Delta ADE=\Delta AHC\left(c.g.c\right)\)

=> \(\widehat{ADE}=\widehat{AHC}=90^o\) hay \(DE\perp AC\)=> DE // AB (2)

Từ (1) và (2) , suy ra D,K,E thẳng hàng (đpcm)

24 tháng 7 2019

A B C D E I O

a, xét tam giác BAE và tam giác BDE có : BE chung

góc ABE = góc DBE do BE là phân giác của góc ABC (gt)

AB = BD (gt)

=> tam giác BAE = tam giác BDE (c-g-c)

b, tam giác BAE = tam giác BDE (câu a)

=> góc BAE = góc BDE (đn)

mà óc BAE = 90 do tam giác ABC vuông tại A (gt)

=> góc BDE = 90 

=> ED _|_ BC (đn)

c, tam giác BAE = tam giác BDE (Câu a)

=> AE = DE (đn)

d,  gọi BE cắt CI tại O 

AB = BD (gt)

AI = DC (gt)

AB + AI = BI 

BD + DC = BC

=> BI = BC 

xét tam giác IOB và tam giác COB có : OB chung

góc IBO = góc CBO do BO là phân giác của góc IBC (gt)

=> tam giác IOB = tam giác COB (c-g-c)

=> góc IOB = góc COB (đn)

mà góc IOB + góc COB = 180 (kb)

=> góc IOB = 180 : 2 = 90 

=> BO _|_ CI (đn)

CA _|_ AB do góc BAC = 90 

xét tam giác IBC 

=> ID _|_ BC (tc)

mà ED _|_ BC (câu b)

=> I; E; D thẳng hàng

20 tháng 2 2020

a, AH = AD (gt)

=> tam giác AHD cân tại A (đn)

=> góc ADI = góc AHI (tc)

xét tam giác ADI và tam giác AHI có : AD = AH (gt)

DI = IH do I là trung điểm của DH (gt)

=> tam giác ADI = tam giác AHI (c-g-c)

b, tam giác AHC vuông tại H 

=> góc CAH + góc ACH = 90 (đl)

có ACH = 30 (gt)

=> góc CAH = 60

xét tam giác AHD cân tại A (câu a)

=> tam giác AHD đều (dh)

c, tam giác ADI = tam giác AHI (Câu a)

=>  góc DAK = góc HAK (đn)

xét tam giác DAK và tam giác HAK có : AK chung

AD = AH (gt)

=> tam giác DAK = tam giác HAK (c-g-c)

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0