Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
=>góc ABD=góc EBD
=>BD là phân giác của góc ABE
b: BA=BE
DA=DE
=>BD là trung trực của AE
a) Xét ΔABD và ΔEBD:
+) AB = BE
+) DB chung
+) ˆABD=ˆEBDABD^=EBD^ (Vì BD là phân giác)
Suy ra: ΔABD=ΔEBD (c.g.c)
- Suy ra DA = DE và DE ⊥⊥ BC
Tam giác EDC có: EC > CD – DE = CD – DA
Suy ra BC – BA > CD – DA
Có AH // DE ⇒ˆHAE=ˆAED⇒HAE^=AED^ (SLT)
Tam giác ADE cân ⇒ˆDAE=ˆAED⇒DAE^=AED^
Suy ra AE là phân giác của ˆHAC^
Kẻ EF ⊥ AC ⇒⇒ ΔAHE=ΔAFE (1)
Tam giác EFC vuông tại F ⇒ EC > EF (2)
Từ (1) và (2) ⇒ EC > HE.
P/s : hình thì tự vẽ :v
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
Mình vẽ nhầm