K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

em biết

22 tháng 2 2019

a, 

1  Ta có ÐCAB = 900 ( vì tam giác  ABC vuông tại A); ÐMDC = 900 ( góc nội tiếp chắn nửa đường tròn ) =>ÐCDB = 900 như vậy D và A cùng nhìn BC dưới một góc bằng 900 nên A và D cùng nằm trên đường tròn  đường kính BC => ABCD là tứ giác nội tiếp.

     ABCD là tứ giác nội tiếp => ÐD1= ÐC3( nội tiếp cùng chắn cung AB).

ÐD1= ÐC3 => => ÐC= ÐC3 (hai góc nội tiếp đường tròn  (O) chắn hai cung bằng nhau)

=> CA là tia phân giác của góc SCB.

2, Xét DCMB Ta có BA^CM; CD ^ BM; ME ^ BC như vậy BA, EM, CD là ba đường cao của tam giác  CMB nên BA, EM, CD đồng quy.

3, 

Ta có ÐMEC = 900 (nội tiếp chắn nửa đường tròn (O)) => ÐMEB = 900.

Tứ giác AMEB có ÐMAB = 900 ; ÐMEB = 900 => ÐMAB + ÐMEB = 1800 mà đây là hai góc đối nên tứ giác AMEB nội tiếp một đường tròn  => ÐA2 = ÐB2 .

Tứ giác ABCD là tứ giác nội tiếp => ÐA1= ÐB2( nội tiếp cùng chắn cung CD)

=> ÐA1= ÐA2 => AM là tia phân giác của góc DAE (2)

Từ (1) và (2) Ta có M là tâm đường tròn  nội tiếp tam giác  ADE

1: góc MDC=1/2*sđ cung CM=90 độ

góc BDC=góc BAC=90 độ

=>BADC nội tiếp

2: góc DEM=góc DCA

góc DCA=góc AEM

=>góc DEM=góc AEM

=>EM là phân giác của góc AED