K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2016

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm

Bài 1: 

a: \(AB=21\cdot\dfrac{3}{7}=9\left(cm\right)\)

AC=21-9=12(cm)

=>BC=15(cm)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=7,2(cm)
Xét ΔAHB vuông tại H có \(AB^2=AH^2+BH^2\)

hay BH=5,4(cm)

=>CH=9,6(cm)

AH
Akai Haruma
Giáo viên
14 tháng 8 2023

Lời giải:

Xét tam giác vuông $ABC$ có:

$\frac{AC}{BC}=\sin B =\sin 30^0  = \frac{1}{2}$

$\Rightarrow BC=2AC=2.3=6$ (cm) 

$AB=\sqrt{BC^2-AC^2}=\sqrt{6^2-3^2}=3\sqrt{3}$ (cm) - theo định lý Pitago

17 tháng 10 2021

a: \(\widehat{B}=60^0\)

AB=8cm

\(AC=4\sqrt{3}\left(cm\right)\)

10 tháng 7 2021

A B C 30o 9 H 18 D

a, ^B = ^A - ^C = 900 - 300 = 600 

\(\cos B=\frac{AB}{AC}\Rightarrow\frac{1}{2}=\frac{9}{AC}\Rightarrow AC=18\)cm 

Áp dụng định lí Pytago tam giác ABC vuông tại A 

\(BC^2=AB^2+AC^2=81+324=405\Rightarrow BC=9\sqrt{5}\)cm 

b, \(\cos B=\frac{BH}{AB}\Rightarrow\frac{1}{2}=\frac{BH}{9}\Rightarrow BH=\frac{9}{2}\)cm 

\(\sin B=\frac{AH}{AB}\Rightarrow\frac{\sqrt{3}}{2}=\frac{AH}{9}\Rightarrow AH=\frac{9\sqrt{3}}{2}\)cm 

c, Vì AD là đường phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{9\sqrt{5}}{27}=\frac{\sqrt{5}}{3}\)

\(\Rightarrow BD=\frac{\sqrt{5}}{3}AB=\frac{\sqrt{5}}{3}.9=3\sqrt{5}\)cm 

\(\Rightarrow HD=BD-BH=3\sqrt{5}-\frac{9}{2}\)cm 

Áp dụng định lí tam giác AHD vuông tại H ta có : 

\(AD^2=AH^2+HD^2=\left(\frac{9\sqrt{3}}{2}\right)^2+\left(3\sqrt{5}-\frac{9}{2}\right)^2\)

tự giải nhé >< 

a. Giải tam giác ABC
B=60^0
AC=AB/tan30=9.√ 3
BC=AB/sin30=9.2 =18
S=AC.AB/2=81√ 3/2
b. Kẻ AH là đường cao, tính AH, BH
AH=2S/BC=81√ 3/18=9√ 3/2
BH=√ (AB^2-AH^2)=9√ (1-3/4)=9/2

Ta có: \(\dfrac{AB}{AC}=\dfrac{4}{5}\)

\(\Leftrightarrow AC=\dfrac{5\cdot AB}{4}=\dfrac{5\cdot6}{4}=7.5\left(cm\right)\)

Xét ΔABC vuông tại A có

\(AB^2+AC^2=BC^2\)

hay \(BC=\dfrac{3\sqrt{41}}{2}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{24\sqrt{41}}{41}\left(cm\right)\\CH=\dfrac{75\sqrt{41}}{82}\left(cm\right)\end{matrix}\right.\)

Đề sai hết ở cả hai câu rồi bạn