K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(Cạnh huyền-góc nhọn)

b) Ta có: ΔBAD=ΔBHD(cmt)

nên BA=BH(hai cạnh tương ứng) và DA=DH(Hai cạnh tương ứng)

Ta có: BA=BH(cmt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DA=DH(cmt)

nên D nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AH(đpcm)

c) Xét ΔADE vuông tại A và ΔHDC vuông tại H có 

DA=DH(cmt)

\(\widehat{ADE}=\widehat{HDC}\)(hai góc đối đỉnh)

Do đó: ΔADE=ΔHDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AE=HC(Hai cạnh tương ứng)

Ta có: BA+AE=BE(A nằm giữa B và E)

BH+HC=BC(H nằm giữa B và C)

mà BA=BH(cmt)

và AE=HC(cmt)

nên BE=BC(đpcm)

d) Ta có: ΔADE=ΔHDC(cmt)

nên DE=DC(Hai cạnh tương ứng)

Ta có: BE=BC(cmt)

nên B nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: DE=DC(cmt)

nên D nằm trên đường trung trực của EC(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra BD là đường trung trực của EC

hay BD\(\perp\)EC(đpcm)

e) Ta có: DA=DH(cmt)

mà DH<DC(ΔDHC vuông tại H)

nên DA<DC(đpcm)

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
30 tháng 4 2016

Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH 
=> điểm B, E cách đều 2 mút của đoạn thẳng AH 
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
 

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

5

Bạn tự vẽ hình nha!!!

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

30 tháng 4 2016

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

15 tháng 12 2019

1) Hình : Tự vẽ

a) Ta có : AM = MD (gt)

                HM = MC (gt)

    Nên : ACDH là hình bình hành

          => AH = CD (đpcm)

b) Cho HD cắt AB tại E

    Do : ACDH là hình bình hành (cmt)

    Nên : AC // HD (=) AC // ED

    Mà : \(\widehat{EAC}=90^o\)

         => \(\widehat{AED}=180^o-\widehat{EAC}=180^o-90^o=90^o\)

    Do đó : DH \(\perp\)AB (đpcm)

c) Ta có : \(\widehat{EHA}=\widehat{CDE}\)(đồng vị)

    Xét \(\Delta EAH\)và \(\Delta CHD\), ta có :

          \(\widehat{AEH}=\widehat{HCD}=90^o\)

          \(\widehat{EHA}=\widehat{CDH}\)(cmt)

   Nên : \(\Delta EAH\)đồng dạng với \(\Delta CHD\)(g - g)

        => \(\widehat{BAH}=\widehat{DHC}\)

giúp mình nhanh nha, mai thi rùiCho 2 đa thức A(x) = 2x mũ 2- x mũ 3 + x-3 và B(x)= x mũ 3 - x mũ 2 + 3 - 3xa) Tính P(x)= A(x) + B(x)b) Tìm nghiệm của P(x) (Tức là tìm x để P(x)=0)c) Cho đa thức Q(x) = 5x mũ 2 - 5 + a mũ 2+ ax. Tìm các giá trị của a để Q(x) có nghiệm x= -1cho tam giác ABC vuông tại A (AB<AC), tia phân giác của góc B cắt AC tại M. Trên tia đối của tia MB lấy D sao cho MB=MD, từ D vẽ đường thẳng vuông góc...
Đọc tiếp

giúp mình nhanh nha, mai thi rùi

Cho 2 đa thức A(x) = 2x mũ 2- x mũ 3 + x-3 và B(x)= x mũ 3 - x mũ 2 + 3 - 3x

a) Tính P(x)= A(x) + B(x)
b) Tìm nghiệm của P(x) (Tức là tìm x để P(x)=0)

c) Cho đa thức Q(x) = 5x mũ 2 - 5 + a mũ 2+ ax. Tìm các giá trị của a để Q(x) có nghiệm x= -1

cho tam giác ABC vuông tại A (AB<AC), tia phân giác của góc B cắt AC tại M. Trên tia đối của tia MB lấy D sao cho MB=MD, từ D vẽ đường thẳng vuông góc với AC tại N và cắt BC tại E

a) cminh: tam giác ABM= tam giác NDM

b) cminh: BE=DE

c) cminh rằng: MN < MC

cho tam giác ABC ( góc A= 90 độ), BD là phân giác của góc B (D thuộc AC). Trên tia BC lấy E sao cho BA = BE

a) cminh: tam giác BAD = tam giác BED, suy ra DE = DA

b) cminh: BD là đường trung trực của AE

c) Kẻ AH vuông góc BC. So sánh EH và EC

 

 

            

 

 

 

 

 

 

2

\(A\left(x\right)=2x^2-x^3+x-3\)

\(B\left(x\right)=x^3-x^2+3-3x\)

a, Ta có : \(P\left(x\right)=A\left(x\right)+B\left(x\right)=2x^2-x^3+x-3+x^3-x^2+3-3x\)

\(=x^2-2x\)

b, Đề khs hiểu thế, đã là 1 đa thức thì luôn đặt đa thức ''='' 0 thôi :v 

Đặt \(P\left(x\right)=x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy đa thức có nghiệm là 0;2 

c, \(Q\left(x\right)=5x^2+a^2+ax\)

Ta có : \(Q\left(-1\right)=5\left(-1\right)^2+a^2+a\left(-1\right)=0\)

\(\Leftrightarrow5+a^2-a=0\)(cùy, ko nốt đc)

Suy ra : Vô nghiệm Vậy đa thức ko có nghiệm.

Đề hình thiếu rồi bn :))