Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=10cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó; ΔABD=ΔEBD
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
DO đó: ΔBAD=ΔBED
Suy ra: BA=BE
hay ΔBAE cân tại B
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔBAD=ΔBED(cạnh huyền-góc nhọn)
Suy ra: DA=DE(Hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(Cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
Xét ΔDFC có DF=DC(cmt)
nên ΔDFC cân tại D(Định nghĩa tam giác cân)
tu ke hinh :
a, xet tam giac ABD va tam giac HBD co : BD chung
goc ABD = goc HBD do BD la phan giac cua goc ABC (gt)
goc BAC = goc DHB = 90 do dau tu ma tim
=> tam giac ABD = tam giac HBD (ch - gn)
b,
+ AB _|_ AC do tam giac ABC vuong (gt) (1)
EI _|_ AC (gt) (2)
=> EI // AB (dl)
BI _|_ AB (gt) (3)
=> IB _|_ EI (dl) (4)
(1)(2)(3)(4) => EIBA la hinh chu nhat (dn)
co AB = EA (gt)
=> EIBA la hinh vuong (dn)
=> AB = AE = EI = IB (dn)
+ co tam giac ABD = tam giac HBD (Cau a) => BH = AB (dn)
=> AB = AE = EI = IB = BH (tcbc)
sao có mỗi đề không vậy bạn, chẳng thấy câu hỏi đâu hết
ui vl quên ạ=))