K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

A B C D H

CM : a) Xét tam giác ABD và tam giác HBD

có AB = BD (gt)

   góc DBA = góc HBD (gt)

  BD : chung

=> tam giác ABD = tam giác HBD (c.g.c) (Đpcm)

b) Ta có : tam giác ABD = tam giác HBD (cm câu a)

=> góc A = góc DHB ( hai góc tương ứng)

Mà góc A =900 => góc DHB = 900 

                      => DH vuông góc với BC

c) Xét tam giác ABC có góc A = 900

=> góc B + góc C = 900 (t/c của 1 tam giác)

=> góc B = 900 - góc C = 900 - 360 = 540

Ta có : góc HBD = góc DBA = góc B/2 = 540/2 = 270

Xét tam giác ADE có A = 900

=> góc ADB + góc DBA = 900 (t/c của 1tam giác)

=> góc ADE = 900 - góc ADB = 900 - 270 = 630

3 tháng 1 2019

(Em tự vẽ hình, ghi GT-KL nhé)

a) Xét \(\Delta ABD\)và \(\Delta HBD\)có:

AB = BH (gt)

^ABD = ^HBD (gt)

BD chung

=> \(\Delta ABD=\Delta HBD\left(c.g.c\right)\)

b) Ta có: \(\Delta ABD=\Delta HBD\left(cmt\right)\)

=> ^BAD = ^BHD = 90o 

=> \(DH\perp BC\)

c) 

\(\Delta ABC\)có : ^BAC + ^ABC + ^CBA = 180o

=> ^ABC = 180o- 90o- 36o = 54o

=> ^DBC = 1/2 ^ABC = 37o

\(\Delta BDC\)^ADB là góc ngoài tại đỉnh D

=> ^ADB = ^DBC + ^DCB = 37o + 36= 73o

Chúc em học tốt!!!

17 tháng 12 2021

a: Xét ΔBAD và ΔBHD có 

BA=BH

\(\widehat{ABD}=\widehat{HBD}\)

BD chung

Do đó: ΔBAD=ΔBHD

Mọi người giúp Em với 

A B C D H

a) Xét \(\Delta ABD\)và \(\Delta HBD\)có:

\(BA=BH\left(gt\right)\)

\(\widehat{ABD}=\widehat{HBD}\)(ad là tia phân giác của \(\widehat{B}\))

\(BD\)là cạnh chung

Do đó: \(\Delta ABD=\Delta HBD\left(c.g.c\right)\)

22 tháng 12 2021

a: Xét ΔABD và ΔHBD có

BA=BH

\(\widehat{ABD}=\widehat{HBD}\)

BD chung

Do đó: ΔABD=ΔHBD

b: Ta có: ΔABD=ΔHBD

=>DH⊥BC

22 tháng 12 2021

Bn lm đc câu C ko

16 tháng 11 2021

Ok bạn. Mình không biết đúng hay saiundefined

16 tháng 11 2021

undefinedđây nhabn

10 tháng 12 2017

Bn tự vẽ hình nha 

a/ xét 🔼ABD và🔼HDB có:

AB=HB(GT)

ABD=DBH(do bd là phân giác của góc b)

cạnh BD chung

=>🔼ABD=🔼HDB(C.G.C)

b/ ta có 🔼ABD=🔼HDB( theo a)

<=>BAD= BDH=90 độ

=> dh vuông góc với bc

c/ vì tam giác ABC vuông tại A=> góc b + góc c = 90 độ => góc b = 30 độ

Vì db là phân giác của góc b=> gócDBC=15 độ

Xét tam giác DBC có DBC+DCB+BDC=180 độ ( định lí tổng 3 góc)

=> BDC=180-60-15=105 độ

Đúng hơm bn

10 tháng 12 2017

giải quá nhanh,sai

Sửa đề: DH vuông góc với BC

a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔHBD(cmt)

nên DA=DH(hai cạnh tương ứng)

Xét ΔADK vuông tại A và ΔHDC vuông tại H có 

DA=DH(cmt)

AK=HC(gt)

Do đó: ΔADK=ΔHDC(hai cạnh góc vuông)

Suy ra: DK=DC(hai cạnh tương ứng)

Ta có: BA+AK=BK(A nằm giữa B và K)

BH+HC=BC(H nằm giữa B và C)

mà BA=BH(ΔBAD=ΔBHD)

và AK=HC(gt)

nên BK=BC

Ta có: BK=BC(cmt)

nên B nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DK=DC(cmt)

nên D nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(2)

TỪ (1) và (2) suy ra BD là đường trung trực của CK

hay BD⊥CK

Xét ΔBKC có 

BD là đường cao ứng với cạnh KC(cmt)

CA là đường cao ứng với cạnh BK(gt)

CA cắt BD tại D(gt)

Do đó: D là trực tâm của ΔBKC(Tính chất ba đường cao của tam giác)

Suy ra: KD là đường cao ứng với cạnh BC

mà DH là đường cao ứng với cạnh BC(gt)

và KD, DH có điểm chung là D

nên K,D,H thẳng hàng(đpcm)

a: Xét ΔBAD và ΔBHD có

BA=BH

\(\widehat{ABD}=\widehat{HBD}\)

BD chung

Do đó: ΔBAD=ΔBHD

Suy ra: \(\widehat{BAD}=\widehat{BHD}=90^0\)

hay DH\(\perp\)BC

b: \(\widehat{ABH}=180^0-110^0=70^0\)

nên \(\widehat{ABD}=\dfrac{70^0}{2}=35^0\)

2 tháng 5 2023

loading...    

a) Xét hai tam giác vuông: ∆ABD và ∆HBD có:

BD chung

∠ABD = ∠HBD (BD là phân giác của ∠ABH)

⇒ ∆ABD = ∆HBD (cạnh huyền - góc nhọn)

b) Do ∆ABD = ∆HBD (cmt)

⇒ AB = BH (hai cạnh tương ứng)

⇒ B nằm trên đường trung trực của AH (1)

Do ∆ABD = ∆HBD (cmt)

⇒ AD = HD (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AH (2)

Từ (1) và (2) ⇒ BD là đường trung trực của AH

c) Xét ∆ADK và ∆HDC có:

AD = HD (cmt)

∠ADK = ∠HDC (đối đỉnh)

DK = DC (gt)

⇒ ∆ADK = ∆HDC (c-g-c)

⇒ ∠DAK = ∠DHC (hai góc tương ứng)

⇒ ∠DAK = 90⁰

Mà ∠DAB = 90⁰

⇒ ∠DAK + ∠DAB = 180⁰

⇒ B, A, K thẳng hàng