Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có
BE chung
\(\widehat{ABE}=\widehat{KBE}\)
Do đó: ΔABE=ΔKBE
b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K cso
EA=EK
\(\widehat{AEM}=\widehat{KEC}\)
Do đó:ΔAEM=ΔKEC
Suy ra: EM=EC
c: Xét ΔBMC có BA/AM=BK/KC
nên AK//MC
a: Xét ΔABE vuông tại A và ΔKBE vuông tại K có
BE chung
\(\widehat{ABE}=\widehat{KBE}\)
Do đó: ΔABE=ΔKBE
b: Xét ΔAEM vuông tại A và ΔKEC vuông tại K có
EA=EK
\(\widehat{AEM}=\widehat{KEC}\)
Do đó: ΔAEM=ΔKEC
Suy ra: EM=EC
c: Xét ΔBMC có BA/AM=BK/KC
nên AK//MC
a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có
BE chung
\(\widehat{ABE}=\widehat{KBE}\)
Do đó: ΔBAE=ΔBKE
b: ta có: ΔBAE=ΔBKE
=>EA=EK
Xét ΔEAM vuông tại A và ΔEKC vuông tại K có
EA=EK
\(\widehat{AEM}=\widehat{KEC}\)(hai góc đối đỉnh)
Do đó: ΔEAM=ΔEKC
=>EM=EC
c: Ta có: ΔEAM=ΔEKC
=>AM=KC
Ta có: ΔBAE=ΔBKE
=>BA=BK
Xét ΔBMC có \(\dfrac{BA}{AM}=\dfrac{BK}{KC}\)
nên AK//MC
d: Ta có: NM=NC
=>N nằm trên đường trung trực của MC(1)
Ta có: EM=EC
=>E nằm trên đường trung trực của CM(2)
Ta có: BA+AM=BM
BK+KC=BC
mà BA=BK và AM=KC
nên BM=BC
=>B nằm trên đường trung trực của MC(3)
Từ (1),(2),(3) suy ra B,E,N thẳng hàng
nếu bạn ko thấy ảnh thì zô thống kê hỏi đáp của mình là thấy bài này nhá . ( cậu tìm câu nào có câu này r ấn zô xem nha )
hoặc link bài của mình nè
https://scontent-hkt1-1.xx.fbcdn.net/v/t1.15752-9/89947717_345887062999332_7304147707155709952_n.jpg?_nc_cat=110&_nc_sid=b96e70&_nc_ohc=Hj57duZ44dcAX91P2ra&_nc_ht=scontent-hkt1-1.xx&oh=7ea184f17776bd230198145c38f92aae&oe=5E95F1D5
Xét tam giác ABE vuông tại A và tam giác HBE vuông tại H ta có
BE = BE ( cạnh chung ) ; góc ABE = góc HBE ( BE là tia phân giác góc B )
--> tam giác ABE = tam giác HBE ( ch = gn )
b ) ta có :
BA = BH ( tm giác ABE = tam giác HBE )
EA = EH ( tam giác ABE = tam giác HBE )
==> BE là đường trung của của AH
Xét tam giác EKA và tam giác ECH ta có :
AE = EH ( tam giác ABE = tam giác HBE ) ; góc EAK = góc EHC ( =90 ) góc AEK = góc HEC
-->tam giác EAK = tam giác ECH ( g--c--h )
--> EK =EC ( 2 cạnh tương ứng )
d) từ điểm E đến đường thẳng HC tacó :
EH là đường vuông góc ( EH vuông góc BC )
EC là đường xuyên
-> EH < EC ( quan hệ đường xuyên đường vuông góc )
Mà E H = EA ( tam giác ABE= tam giác HBE )
câu e) bn chỉ cần chứng minh 3 điểm này thuộc tia phân giác
bài này mk làm rùi!!
56576879870
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó:ΔBAM=ΔBDM
Suy ra:BA=BD
b: Xét ΔBDE vuông tại D và ΔBAC vuông tại A có
BD=BA
\(\widehat{DBE}\) chung
Do đó: ΔBDE=ΔBAC
a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có
BE chung
góc ABE=góc KBE
=>ΔBAE=ΔBKE
b: Xét ΔEAM vuông tại A và ΔEKC vuông tại K có
EA=EK
góc AEM=góc KEC
=>ΔEAM=ΔEKC
=>EM=EC và AM=KC
c: Xét ΔBMC có BA/AM=BK/KC
nên AK//MC
d: BM=BC
Em=EC
=>BE là trung trực của MC
=>B,E,N thẳng hàng