K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2015

Bạn vẽ hình hộ nha

- ta có BC=BD+CD = 15+20 = 35; AB2 + AC2 =BC2 (ABC vuông tại A)

- Áp dụng t/c đường phân giác trong tam giác ABC có \(\frac{AB}{BD}=\frac{AC}{CD}\Rightarrow\frac{AB}{15}=\frac{AC}{20}\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}\)

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{BC^2}{25}=\frac{35^2}{25}=49\)

\(\Rightarrow AB=3.7=21;AC=4.7=28\)

- Mặt khác:  AC2 = CH.BC  => CH = AC2 /BC = 282/35 = 22,4

Vậy CH = 22,4cm

17 tháng 11 2015

tam giác ABC có AD phân giác nênAB/AC=BD/CD=15/20=3/4

BC=15+20=35

AB/AC=3/4=>AB2/AC2=9/16=>AB2/\(\left(AC^2+AB^2\right)=\)9/25

=>\(\frac{AB^2}{BC^2}=\frac{9}{25}\Rightarrow AB=\sqrt{35^2.\frac{9}{25}}=21\)

tam giác vuông ABC có AH là đường cao 

BH=\(\frac{AB^2}{BC}=12.6\)

tick nhaaaaaaaaaaaaaaaaaaa

30 tháng 7 2016

cho tam giác ABC vuông tại A. AB=15, AC=20, đg phân giác BD. 

a, Tính AD

b, Gọi H là hình chiếu của A trên BC. Tính AH, HB

c, Cm tam giác AID cân

21 tháng 11 2015

tớ làm được rùi . cảm ơn

18 tháng 11 2015

Chú ý đề bài không tưởng nhầm là  AH.AB =6cm

Đè bài viết thế thì chết ( AB =6 cm)

18 tháng 11 2015

Bạn chửi người ta ngu chẳng ai muốn giúp bạn đâu !!

1 tháng 9 2017

A B C 14 cm 16 cm

\(\text{Gọi AH là hình chiếu của AB trên cạnh huyền BC.}\)

\(\text{Áp dụng hệ thức lượng vào ∆ABC vuông tại A, ta có: }\)\(AC^2=CH.BC\)

                                                                                                          \(\Leftrightarrow CH=\frac{AC^2}{BC}=\frac{14^2}{16}=12,25\left(cm\right)\)

\(\text{Áp dụng định lý Pytago vào ∆HAC vuông tại H:}\) \(AH^2=AC^2-HC^2\)

                                                                                            \(\Leftrightarrow AH=\sqrt{14^2-12,25^2}=\sqrt{\frac{735}{16}}=\frac{7\sqrt{15}}{4}\left(cm\right)\)

22 tháng 10 2015

Nguyễn Ngọc Sáng ảnh doremon

11 tháng 12 2015

S=pr => r=1,5 nhé Trang ^^

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

Theo tính chất tia phân giác:

$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$

Áp dụng hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC$

$AC^2=CH.BC$

$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$

Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)

Do đó:

$BH=35:(9+16).9=12,6$ (cm)

$CH=35:(9+16).16=22,4$ (cm)

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Hình vẽ:

Ta có : AD Là đường p.giác trong tam giác ABC

=> \(\frac{AB}{BD}=\frac{AC}{DC}\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\)

Ta có : \(AB^2=BH.BC\)

           \(AC^2=CH.BC\)

\(\Rightarrow\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)

TA CÓ : \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\Rightarrow\frac{BH}{CH}=\frac{3^2}{4^2}=\frac{9}{16}\)

\(\Rightarrow BH=\frac{9CH}{16}\)

MÀ BH + CH = BC

THẾ VÀO TA CÓ : \(\frac{9CH}{16}+CH=BC\)

\(\Rightarrow25CH=560\)( QUY ĐỒNG 2 VẾ )

\(CH=\frac{560}{25}=22.4\)

\(\Rightarrow BH=BC-22.4=35-22.4=12.6\)

vậy : BH = 12,6 ; BC = 35

:)