K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2022

a) Tam giác ABC vuông tại A (gt).

=> A; B; C cùng thuộc đường tròn đường kính BC. (1)

Xét đường tròn đường kính MC: 

\(\in\) đường tròn đường kính MC (gt).

=> \(\widehat{MDC}=90^o\) hay \(\widehat{BDC}=90^o.\)

Tam giác BDC vuông tại D (\(\widehat{BDC}=90^o\)).

=> B; D; C cùng thuộc đường tròn đường kính BC. (2)

Từ (1); (2) => A; B; C; D cùng thuộc đường tròn đường kính BC.

b) Xét tam giác ABC có:

+ O là trung điểm BC (gt).

+ M là trung điểm AC (gt).

=> OM là đường trung bình.

=> OM // AB (Tính chất đường trung bình).

Mà AB \(\perp\) MC (AB \(\perp\) AC).

=> OM \(\perp\) MC.

Xét đường tròn đường kính MC:  OM \(\perp\) MC (cmt); M \(\in\) đường tròn đường kính MC (gt).

=> OM là tiếp tuyến. 

20 tháng 4 2016

Hình bạn tự vẽ nha

a) Xét đường tròn đường kính MC

Ta có góc MDC=90 độ (góc nội tiếp chắn nửa dt)

Hay góc BDC = 90 độ

Xét tứ giác BADC có 

Góc BAC =90 ĐỘ (GT)

Góc BDC =90 độ (cmt)

Mà hai đỉnh của góc này ở vị trí  kề nhau do đó tứ giác BADC nt đường tròn ĐK BC

tâm O của dt là trung điểm BC

b)Xét dt đk BC có 

Góc ADB=GÓC  ACB (hai góc nt cùng chắn cung AB)(1)

Xét đường dt đường kính MC có góc MDN= GÓC MCN (hai góc nt cùng chắn cung MN)

hay Góc BMN  = GÓC ABC (2) 

Từ (1) (2) suy ra Góc ADB = Góc BDN (= góc ABC)

=> BD là phần giác góc ADN (đpcm)

c)Xét tam giác ABC có

AM=MC(GT)

OB=OC (=BÁN KÍNH CỦA DT NGOẠI TIẾP TỨ GIÁC BADC)

=> OM lad đtb của tam giác ABC

Suy ra OM//AB (t/c Đtb)

Do đó Góc OMC = 90 độ

Suy ra OM là tt của dt dk MC

d)Xét dt dk MC có

Góc MNC = 90 dộ (góc nt chắn nửa dt)

Hay góc PNC =90 độ

Xét Tam giác BPC CÓ

BD vuông góc PC ( góc BDC =  90) (cmt)

AC vuông góc với PB (góc ABC =90)(GT)

Mà hai đường thẳng này cắt nhau tại M do đó M là trực tâm của tam giắc BPC

Mặc khác PN vuông góc BC (Góc BNC = 90 ĐỘ) (cmt)

Do đó PN sẽ đi qua M => Ba điểm P,N,C thẳng hàng

--------------------------------------------------Hết------------------------------------------

Bài làm còn nhiều thiếu xót đặc biệt là cach trình bày mặt dù tớ hiểu mong các góp  ý kiến đẻ mình hoàn thiện hơn

a: Gọi I là trung điểm của CM

Xét (I) có

ΔCDM nội tiếp

CM là đường kính

Do đó: ΔCDM vuông tại D

=>góc CDM=góc CDB=90 độ

Xét tứ giác ABCD có

góc CAB=góc CDB=90 độ

=>ABCD nội tiếp

b: Xét ΔCAB có CO/CB=CM/CA=1/2

nên OM//AB

=>OM vuông góc AC tại M

=>OM là tiếp tuyến của (I)

31 tháng 8 2023

a) Để chứng minh A, B, C, D cùng thuộc một đường tròn, ta cần chứng minh tứ giác ABCD là tứ giác nội tiếp. Ta có:

- Góc BAD = góc BAC (cùng chắn cung BC)

- Góc BCD = góc BCA (cùng chắn cung BA)

Do đó, góc BAD + góc BCD = góc BAC + góc BCA = 90 độ (vì tam giác ABC vuông tại A)

Suy ra, tứ giác ABCD là tứ giác nội tiếp.

 

b) Để chứng minh OM là tiếp tuyến của đường tròn đường kính MC, ta cần chứng minh OM vuông góc với MC. Ta có:

- Góc OMB = góc ONB (cùng chắn cung OB)

- Góc ONB = góc MNB (do tam giác MNB vuông tại N)

- Góc MNB = góc MCB (do tam giác MCB vuông tại C)

- Góc MCB = góc ACB (do tam giác ABC vuông tại A)

Do đó, góc OMB = góc ACB

Suy ra, OM vuông góc với MC.

Vậy OM là tiếp tuyến của đường tròn đường kính MC.

23 tháng 4 2022

Xét (O) có

ΔCDM nội tiếp

CM là đường kính

DO đó: ΔCDM vuông tại D

Xét tứ giác ABCD có 

ˆCDB=ˆCAB=900CDB^=CAB^=900

Do đó: ABCD là tứ giác nội tiếp

b: ˆBCA=ˆADBBCA^=ADB^

mà ˆADB=ˆKCAADB^=KCA^

nên ˆBCA=ˆKCABCA^=KCA^

hay CA là tia phân giác của góc KCB

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:

1.

$\widehat{MDC}=90^0$ (góc nt chắn nửa đường tròn)

$\Leftrightarrow \widehat{BDC}=90^0$

Tứ giác $ABCD$ có $\widehat{BAC}=\widehat{BDC}=90^0$ và cùng nhìn cạnh $BC$ nên là tgnt.

Do $ABCD$ nội tiếp nên $\widehat{BCA}=\widehat{BDA}$

Mà $\widehat{BDA}=\widehat{MCS}$ (do $MDSC$ nội tiếp)

$\Rightarrow \widehat{BCA}=\widehat{MCS}$

$\Rightarrow CA$ là phân giác $\widehat{BCS}$

2.

Gọi $T$ là giao điểm của $BA$ và $EM$

Xét tam giác $BTC$ có $TE\perp BC$ (do $\widehat{MEC}=90^0$) và $CA\perp BT$ và $TE, CA$ giao nhau tại $M$ nên $M$ là trực tâm tam giác $BTC$

$\Rightarrow BM\perp TC$.

Mà $BM\perp DC$ nên $TC\parallel DC$ hay $T,D,C$ thẳng hàng

Do đó $BA, EM, DC$ đồng quy tại $T$

3.

Vì $ABCD$ nt nên $\widehat{MAD}=\widehat{CAD}=\widehat{DBC}=\widehat{MBE}$

Dễ cm $BAME$ nội tiếp cho $\widehat{A}+\widehat{E}=90^0+90^0=180^0$ nên $\widehat{MBE}=\widehat{EAM}$

Do đó: $\widehat{MAD}=\widehat{EAM}$ nên $AM$ là tia phân giác $\widehat{EAM}(*)$

Mặt khác:

Cũng do $MECD,ABCD$ nội tiếp nên:

$\widehat{ADM}=\widehat{ADB}=\widehat{ACB}=\widehat{MCE}=\widehat{MDE}$

$\Rightarrow DM$ là tia phân giác $\widehat{ADE}(**)$

Từ $(*); (**)\Rightarrow M$ là tâm đường tròn nội tiếp $ADE$.

 

 

 

 

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Hình vẽ:

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái