K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

a: Xét ΔMAD và ΔMCB có

MA=MC

\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)

MD=MB

Do đó: ΔMAD=ΔMCB

=>AD=BC

b: Xét ΔMAB và ΔMCD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD

Do đó: ΔMAB=ΔMCD

=>\(\widehat{MAB}=\widehat{MCD}=90^0\)

=>CD\(\perp\)CA

c: Xét tứ giác ABNC có

AB//NC

AC//BN

Do đó: ABNC là hình bình hành

=>AB=CN

Xét ΔABM vuông tại A và ΔCNM vuông tại C có

AB=CN

AM=CM

Do đó: ΔABM=ΔCNM

15 tháng 12 2023

C.ơn

16 tháng 12 2017

a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

b) Ta có  \(\Delta ABM\)\(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)

=> AB // CD (đpcm)

28 tháng 11 2021
S/fffffffffdsbdhdjndbdbdbfbfbdbbdbdbfndndndbfnfnfnfnfnfn
25 tháng 8 2021

TL:

1) Xét tam giác ABM và tam giác CDM có:

- AM = CM

- Góc AMB = góc CMD (2 góc đối đỉnh)

- BM = DM

-> Tam giác ABM = tam giác CDM (c.g.c)

2) Vì tam giác ABM = tam giác CDM 

-> Góc MAB = góc MCD = 90o

-> MC vuông góc vs CD hay AC vuông góc vs DC 

3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:

- M là trung điểm của AC (giả thiết)

- MF//DC (cmt)

Nên MF là đường trung trực của tam giác ACD

-> F là trung điểm của AD

EM RẢNH NÊN EM MỚI TL CHỨ LÂU NHƯ NÀY EM KO RẢNH CHẮC KO TL ĐÂU

6 tháng 2 2022

TL:

1) Xét tam giác ABM và tam giác CDM có:

- AM = CM

- Góc AMB = góc CMD (2 góc đối đỉnh)

- BM = DM

-> Tam giác ABM = tam giác CDM (c.g.c)

2) Vì tam giác ABM = tam giác CDM 

-> Góc MAB = góc MCD = 90o

-> MC vuông góc vs CD hay AC vuông góc vs DC 

3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:

- M là trung điểm của AC (giả thiết)

- MF//DC (cmt)

Nên MF là đường trung trực của tam giác ACD

-> F là trung điểm của AD

a,Có BC^2=5^2=25 
AB^2+AC^2=3^2+4^2=25 
suy ra BC^2=AB^2+AC^2 
Theo ĐL Pitago đảo thì tam giác ABC vuông tại A. 

15 tháng 4 2019

A B C M N K D H

a) Xét ΔΔBMC và ΔΔDMA có:

BM = DM (gt)

BMCˆBMC^ = DMAˆDMA^ (đối đỉnh)

MC = MA (suy từ gt)

=> ΔΔBMC = ΔΔDMA (c.g.c)

=> BC = DA (2 cạnh tương ứng)

b) Vì ΔΔBMC = ΔΔDMA (câu a)

nên BCAˆBCA^ = CADˆCAD^ (2 góc t ư) và BC = DA (2 cạnh t ư)

Xét ΔΔDCA và ΔΔBAC có:

CA chung

CADˆCAD^ = ACBˆACB^ ( cm trên)

DA = BC (cm trên)

=> ΔΔDCA = ΔΔBAC (c.g.c)

=> DCAˆDCA^ = BACˆBAC^ = 90 độ (góc t ư)

Do đó CD ⊥⊥ AC

c) .................

7 tháng 4 2020

              Giải

a) Xét ΔBMC và ΔDMA có:

BM = DM (gt)

BMC\(\widehat{BMC}\) = \(\widehat{DMA}\)(đối đỉnh)

MC = MA (suy từ gt)

=> ΔBMC = ΔDMA (c.g.c)

=> BC = DA (2 cạnh tương ứng)

b) Vì ΔBMC = ΔDMA (câu a)

nên \(\widehat{BCA}=\widehat{CAD}\)\(\widehat{CAD}\)(2 góc t ư) và BC = DA (2 cạnh t ư)

Xét ΔDCA và ΔBAC có:

CA chung

\(\widehat{CAD}\)\(\widehat{ACB}\)(cm trên)

DA = BC (cm trên)

=> ΔDCA = ΔBAC (c.g.c)

=> \(\widehat{DCA}\) = \(\widehat{BAC}\)= 90 \(^0\) (góc t ư)

Do đó CD  AC

 c,Vì BN // AC (gt) => \(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)\(\widehat{BND}\)=\(\widehat{ACD}\)=90\(^0\)

Xét tam giác BND vuông tại N có:

NM là đường trung tuyến ứng vs cạnh huyền BD => NM=\(\frac{1}{2}\)BC=BM

Xét 2 tam giác vuông: ΔABM(\(\widehat{A}\)=90\(^0\))ΔABM(\(\widehat{A}\)=90\(^0\))và ΔCNM(\(\widehat{C}\)=90\(^0\))ΔCNM(\(\widehat{C}\)=90\(^0\)) có:

AM = CM (gt)

NM = BM (cmt)

=> ΔABM=ΔCNM(ch−1cgv) (đpcm)

# mui #

11 tháng 1 2017

Câu 1:

d A B C D E

Vì BD \(\perp\) d nên \(\widehat{BDA}\) = 90o

Ta có:

\(\widehat{BAD}\) + \(\widehat{BAC}\) + \(\widehat{CAE}\) = 180o

=> \(\widehat{BAD}\) + 90o + \(\widehat{CAE}\) = 180o

=> \(\widehat{BAD}\) + \(\widehat{CAE}\) = 90o (1)

Áp dụng tính chất tam giác vuông ta có:

\(\widehat{DBA}\) + \(\widehat{BAD}\) = 90o (2)

Từ (1) và (2) suy ra:

\(\widehat{BAD}\) + \(\widehat{CAE}\) = \(\widehat{DBA}\) + \(\widehat{BAD}\)

=> \(\widehat{CAE}\) = \(\widehat{DBA}\)

Xét \(\Delta\)DBA vuông tại D và \(\Delta\)EAC vuông tại E có:

BA = AC (giả thiết)

\(\widehat{DBA}\) = \(\widehat{EAC}\) (chứng minh trên)

=> \(\Delta\)DBA = \(\Delta\)EAC (cạnh huyền - góc nhọn)

=> DB = EA và DA = EC (2 cặp cạnh tương ứng).

Câu 2: Mk sẽ làm ở đây: /hoidap/question/166568.html

11 tháng 1 2017

A E D M B N C

a) Xét \(\Delta\)ABM và \(\Delta\)CDM có:

AM = CM (suy từ giả thiết)

\(\widehat{AMB}\) = \(\widehat{CMD}\) (đối đỉnh)

BM = DM (giả thiết)

=> \(\Delta\)ABM = \(\Delta\)CDM (c.g.c)

b) Xét \(\Delta\)AMD và \(\Delta\)CMB có:

AM = CM (suy từ gt)

\(\widehat{AMD}\) = \(\widehat{CMB}\) (đối đỉnh)

MD = MB (gt)

=> \(\Delta\)AMD = \(\Delta\)CMB (c.g.c)

=> \(\widehat{ADM}\) = \(\widehat{CBM}\) (2 góc tương ứng)

mà 2 góc ở vị trí so le trong nên AD // BC.

c) Vì \(\Delta\)AMD = \(\Delta\)CMB (câu b)

nên \(\widehat{ADM}\) = \(\widehat{CBM}\) (2 góc tương ứng)

hay \(\widehat{EDM}\) = \(\widehat{NBM}\)

Xét \(\Delta\)EDM và \(\Delta\)NBM có:

\(\widehat{EDM}\) = \(\widehat{NBM}\) (chứng minh trên)

DM = BM (gt)

\(\widehat{EMD}\) = \(\widehat{NMB}\) (đối đỉnh)

=> \(\Delta\)EDM = \(\Delta\)NBM (g.c.g)

=> EM = NM (2 cạnh tương ứng)

Do đó M là trung điểm của NE.

11 tháng 1 2017

Câu mk làm là câu 2, còn câu 1 làm ở phần kia nha

28 tháng 12 2016

a, Xét tam giác BMC và tam giác AMD có :

MB=MD
góc BMC=góc DMA(đối đỉnh)

MA=MC (gt)

=> tam giác BMC=tamgiacs DMA

=> AD=BC

b, Chứng minh tam giác BMA=tam giác DMC

=>góc BAC= góc DCM(2 goác tương ứng )

=> CD vuông góc với AC

c, Vì BN//AC

BA vuông góc AC

NC vuông góc AC

=> BA=NC

Xét tam giác BAM=tam giác NCM(cạnh huyền-cạnh góc vuông)

=> ĐPCM