K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc CIM=góc CNM=1/2*180=90 độ

=>NM vuông góc BC

góc MAB+góc MNB=180 độ

=>MABN nội tiếp

góc CAB=góc CIB=90 độ

=>CIAB nội tiếp

b: góc ANM=góc MBA

góc INM=góc ICA

mà góc MBA=góc ICA

nên góc ANM=góc INM

=>NM là phân giác của góc ANI

c: Xét ΔBNM vuông tại N và ΔBIC vuông tại I có

góc NBM chung

=>ΔBNM đồng dạng với ΔBIC

=>BN/BI=BM/BC

=>BN*BC=BI*BM

Xét ΔCNM vuông tại N và ΔCAB vuông tại A có

góc NCM chung

=>ΔCNM đồng dạng với ΔCAB

=>CN/CA=CM/CB

=>CN*CB=CA*CM

=>BM*BI+CM*CA=BC^2=AB^2+AC^2

a: Gọi O là trung điểm của MC

=>O là tâm đường tròn đường kính MC

Xét (O) có

ΔCNM nội tiếp

CM là đường kính

Do đó: ΔCNM vuông tại N

=>MN\(\perp\)NC tại N

=>MN\(\perp\)CB tại N

Xét tứ giác ABNM có \(\widehat{MNB}+\widehat{MAB}=90^0+90^0=180^0\)

nên ABNM là tứ giác nội tiếp

=>A,B,N,M cùng thuộc một đường tròn

b: ABNM là tứ giác nội tiếp

=>\(\widehat{ANM}=\widehat{ABM}\)

=>\(\widehat{ANM}=\widehat{ABI}\)(1)

Xét tứ giác CIAB có \(\widehat{CIB}=\widehat{CAB}=90^0\)

nên CIAB là tứ giác nội tiếp

=>\(\widehat{ABI}=\widehat{ACI}\)

mà \(\widehat{ACI}=\widehat{MCI}=\widehat{MNI}\left(=\dfrac{1}{2}sđ\stackrel\frown{MI}\right)\)

nên \(\widehat{ABI}=\widehat{MNI}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MNI}=\widehat{MNA}\)

=>NM là phân giác của góc ANI

AH
Akai Haruma
Giáo viên
12 tháng 5 2021

Lời giải:

a) $\widehat{MNC}=90^0$ (góc nt chắn nửa đường tròn)

$\Rightarrow \widehat{BNM}=90^0$

$\Rightarrow \widehat{BNM}+\widehat{BAM}=90^0+90^0=180^0$

Tứ giác $ABNM$ có tổng 2 góc đối bằng $180^0$ nên là tgnt (đpcm)

$MNCI$ nội tiếp thì hiển nhiên rồi.

b) $\widehat{MIC}=90^0$ (góc nt chắn nửa đường tròn) 

Vì $MNCI, ABNM$ nội tiếp nên:

$\widehat{MNI}=\widehat{MCI}=90^0-\widehat{IMC}=90^0-\widehat{BMA}=\widehat{ABM}=\widehat{ANM}$

Do đó $NM$ là tia phân giác $\widehat{ANI}$

c) Đề sai (nhìn hình)

 

AH
Akai Haruma
Giáo viên
12 tháng 5 2021

Hình vẽ:

23 tháng 4 2022

Xét (O) có

ΔCDM nội tiếp

CM là đường kính

DO đó: ΔCDM vuông tại D

Xét tứ giác ABCD có 

ˆCDB=ˆCAB=900CDB^=CAB^=900

Do đó: ABCD là tứ giác nội tiếp

b: ˆBCA=ˆADBBCA^=ADB^

mà ˆADB=ˆKCAADB^=KCA^

nên ˆBCA=ˆKCABCA^=KCA^

hay CA là tia phân giác của góc KCB

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:

1.

$\widehat{MDC}=90^0$ (góc nt chắn nửa đường tròn)

$\Leftrightarrow \widehat{BDC}=90^0$

Tứ giác $ABCD$ có $\widehat{BAC}=\widehat{BDC}=90^0$ và cùng nhìn cạnh $BC$ nên là tgnt.

Do $ABCD$ nội tiếp nên $\widehat{BCA}=\widehat{BDA}$

Mà $\widehat{BDA}=\widehat{MCS}$ (do $MDSC$ nội tiếp)

$\Rightarrow \widehat{BCA}=\widehat{MCS}$

$\Rightarrow CA$ là phân giác $\widehat{BCS}$

2.

Gọi $T$ là giao điểm của $BA$ và $EM$

Xét tam giác $BTC$ có $TE\perp BC$ (do $\widehat{MEC}=90^0$) và $CA\perp BT$ và $TE, CA$ giao nhau tại $M$ nên $M$ là trực tâm tam giác $BTC$

$\Rightarrow BM\perp TC$.

Mà $BM\perp DC$ nên $TC\parallel DC$ hay $T,D,C$ thẳng hàng

Do đó $BA, EM, DC$ đồng quy tại $T$

3.

Vì $ABCD$ nt nên $\widehat{MAD}=\widehat{CAD}=\widehat{DBC}=\widehat{MBE}$

Dễ cm $BAME$ nội tiếp cho $\widehat{A}+\widehat{E}=90^0+90^0=180^0$ nên $\widehat{MBE}=\widehat{EAM}$

Do đó: $\widehat{MAD}=\widehat{EAM}$ nên $AM$ là tia phân giác $\widehat{EAM}(*)$

Mặt khác:

Cũng do $MECD,ABCD$ nội tiếp nên:

$\widehat{ADM}=\widehat{ADB}=\widehat{ACB}=\widehat{MCE}=\widehat{MDE}$

$\Rightarrow DM$ là tia phân giác $\widehat{ADE}(**)$

Từ $(*); (**)\Rightarrow M$ là tâm đường tròn nội tiếp $ADE$.

 

 

 

 

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Hình vẽ:

19 tháng 11 2019

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ A ∈ đường tròn đường kính BC.

D ∈ đường tròn đường kính MC

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ D ∈ đường tròn đường kính BC

⇒ A, B, C, D cùng thuộc đường tròn đường kính BC

hay tứ giác ABCD nội tiếp.

b) Xét đường tròn đường kính BC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là góc nội tiếp chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) + Trong đường tròn đường kính MC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp cùng chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Trong đường tròn đường kính BC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9