Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Sửa đề: MBKC
Xét ΔBDC có BM/BD=BN/BC
nên MN//CD
Xét tứ giác MBKC có
N là trung điểm chung của MK và BC
=>MBKC là hình bình hành
b: Xét tứ giác AMNH có MN//AH
nên AMNH là hình thang
Xét ΔDBC có DM/DB=DH/DC=1/2
nên MH//BC
=>MH/BC=DM/DB=1/2
=>MH=1/2BC
ΔABC vuông tại A có AN là trung tuyến
nên AN=1/2BC
=>AN=MH
=>AMNH là hình thang cân
c: MN=1/2DC
DH=1/2DC
=>MN=DH
mà MN//DH
nên MNHD là hình bình hành
A F E D B C M
Mình vẽ hình hơi xâu, bạn thông cảm nhé!
a) Xét từ giác ABMC có: + AM cắt BC tại D (bạn dùng ký hiệu giao nhé)
+ DA = DM (gt)
+ DB = DM(gt)
suy ra, tứ giác AMCM là hình bình hành mà ta có góc CAB là góc vuông suy ra tứ giác ABMC là hình chữ nhật
Các câu còn lại bạn đầu có thể giải theo cách trên nhé!
( e mk chưa làm đc, mk mới đc học đến bào hình chữ nhật thôi, sory)
a: Xét ΔABC có
D là trung điểm của BC
E là trung điểm của AB
Do đó: DE là đường trung bình
=>DE//FA và DE=FA
hay AEDF là hình bình hành
a: Sửa đề; B đối xứng D qua N
Xét tứ giac ABCD có
N là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD
b: Xét tứ giá AMBP có
I là trung điểm chung của AB và MP
AB vuông góc với MP
Do đó: AMBP là hình thoi
a: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
b: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
c: Xét tứ giác ADCB có
N là trung điểm của AC
N là trung điểm của BD
Do đó: ADCB là hình bình hành
cho tam giác ABC cân tại A. Gọi M, N, H lần lượt là trung điểm của AB, AC, BC.
a) Chứng minh : Tứ giác MNCB là hình thang cân.
b) Gọi D là điểm đối xứng của H qua N. Các tứ giác AHCD, ADNM là hình gì? Vì sao?
c) Chứng minh : N là trọng tâm của tam giác CMD.
d) MD cắt AC tại E. Chứng minh : BN đi qua trung điểm của HE.