K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)

nên \(AH\cdot BC=AB\cdot AC\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

22 tháng 5 2021

a) Cm tamgiac ABC đồng dạng với tamgiac HBA(g.g)

=> AB/BC = BH/AB hay AB^2 = BH.HC

và cm  tamgiac ABC đồng dạng với tamgiac HAC(g.g)

=> AC/BC = HC/AC hay AC^2 = CH.BH

22 tháng 5 2021

a. Xét tg vuông ABC và  tg vuông HBA có:

\(\widehat{ABH}\)chung

\(\Rightarrow\Delta ABC~\Delta HBA\)

\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}\)

\(\Rightarrow AB^2=HB.BC\)

Cmtt:\(\Delta ABC~HAC\)

\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)

\(\Rightarrow AC^2=BC.HC\)

b. lát làm tiếp nhá

d) Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)

Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)

b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có 

\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)

Do đó:ΔAHB\(\sim\)ΔCHA(g-g)

Suy ra: \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=HB\cdot HC\)

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

Xét ΔHAC và ΔABC có

góc H=góc A

góc C chung

=>ΔHAC đồng dạngvới ΔABC

b: Xet ΔABC vuông tại A có AH vuông góc BC

nên AB*AC=AH*BC; AB^2=BH*BC; AC^2=CH*CB; HA^2=HB*HC; 1/AH^2=1/AB^2+1/AC^2

a) Xét ΔACH vuông tại H và ΔBCA vuông tại A có

\(\widehat{C}\) chung

Do đó: ΔACH\(\sim\)ΔBCA(g-g)

\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{CH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AC^2=CH\cdot CB\)(đpcm)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Thay AC=8cm và BC=10cm vào biểu thức \(AC^2=CH\cdot BC\), ta được:

\(CH\cdot10=8^2=64\)

hay CH=6,4(cm)

Ta có: CH+BH=BC(H nằm giữa B và C)

nên BH=BC-CH=10-6,4=3,6(cm)

Vậy: BH=3,6cm; CH=6,4cm

c) Xét ΔABH vuông tại H và ΔCAH vuông tại H có

\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ với \(\widehat{BAH}\))

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

\(\Leftrightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=BH\cdot CH\)(đpcm)

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

=>BA/BC=BH/BA

=>BA^2=BH*BC

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: Xét ΔCAM có

CK,AH là đường cao

CK cắt AH tại I

=>I là trực tâm

=>MI vuông góc AC

=>MI//AB

Xét ΔHAB có

M là trung điểm của HB

MI//AB

=>I là trung điểm của HA

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Lời giải:
a. Xét tam giác $ABC$ và $HBA$ có:
$\widehat{B}$ chung

$\widehat{BAC}=\widehat{BHA}=90^0$

$\Rightarrow \triangle ABC\sim \triangle HBA$ (g.g)

Ta có:
$AB.AC=AH.BC$ (cùng bằng 2 lần diện tích tam giác $ABC$)

b. 

Xét tam giác $BHA$ và $AHC$ có:

$\widehat{BHA}=\widehat{AHC}=90^0$

$\widehat{HBA}=\widehat{HAC}$ (cùng phụ góc $\widehat{BAH}$)

$\Rightarrow \triangle BHA\sim \triangle AHC$ (g.g)

$\Rightarrow \frac{BH}{HA}=\frac{AH}{HC}$

$\Rightarrow AH^2=BH.CH$.

AH
Akai Haruma
Giáo viên
2 tháng 5 2023

Hình vẽ: