Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a, Áp dụng đl Pythagoras vào ∆ABC vuông tại A có
BC² = AB² + AC²
=> BC² = 6² + 8²
=> BC² = 100
=> BC = √100 = 10(cm) (do BC> 0)
b, Ta có DH ⊥ BC (gt)
=> BHD = CHD = 90°
Xét ∆ABD vuông tại A và ∆HBD vuông tại H có
BD : chung
ABD = CBD (BD là pg ABC - gt)
=>∆ABD = ∆HBD (ch-gn)
=> AD = DH (2 cạnh t/ứ)
c, Xét ∆DHC vuông tại H có
DC > HD (ch > cgv)
Mà HD = AD (cmt)
=> DC > AD
d, Ta có BAC +KAC = 180° (kề bù)
=> 90° + KAC = 180°
=> KAC = 90°
Lại có : KB = BC (gt)
AB = BH (∆ABD = ∆HBD)
=> KB - AB = BC - BH
=> AK = CH
Xét ∆AKD vuông tại A và ∆HCD vuông tại H có
AK = CH (cmt)
AD = HD (cmt)
=>∆AKD = ∆HCD (2 cgv)
=> ADK = HDC (2 góc t/ứ)
Mặt khác ta có
ADH + HDC = 180° (kề bù)
=> ADK + ADH = 180°
=> KDH = 180°
=> K,D,H thẳng hàng
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)
c) Ta có: ΔADH vuông tại H(gt)
nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)
nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)
Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)
Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)
nên ΔBAD cân tại B(Định lí đảo của tam giác cân)