K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

Nguyễn Huy Thắng, Trần Việt Linh, Nguyễn Huy Tú, Trương Hồng Hạnh, soyeon_Tiểubàng giải, Hoàng Lê Bảo Ngọc, Phương An,....

14 tháng 12 2016

sr mọi người vào đây nhé, bài này mk ghi thiếu Câu hỏi của Luyện Ngọc Thanh Thảo

14 tháng 12 2019

Không biết có phải mình vẽ hình sai hay không chứ mình thấy đề hơi vô lí 

23 tháng 11 2018

Hình tự vẽ nha 

a) Vì tam giác ABC cân tại A

=> ABC = ACB (1)

Ta có ABC + ABD = ACB + ACE ( cùng = 1800 ) (2)

Từ (1) và (2) => ABD = ACE

Xét tam giác ABD và tam giác ACE có :

AB = AC ( gt )

ABD = ACE ( cmt )

BD = CE ( gt )

=> tam giác ABD = tam giác ACE ( c-g-c )

=> D = E

Xét tam giác BHD và tam giác CKE có :

DHB = EKC ( = 900 )

BD = CE ( gt )

D = E ( cmt )

=> tam giác BHD = tam giác CKE ( ch - gn )

=> đpcm

b) Vì tam giác ABD = tam giác ACE ( chứng minh câu a )

=> HAB = KAC ( 2 góc tương ứng )

Xét tam giác AHB và tam giác AKC có :

HAB = KAC ( cmt )

AHB = AKC ( = 900 )

AB = AC ( gt )

=> tam giác AHB = tam giác AKC ( ch - gn )

=> đpcm

c) Nối H với K

Xét tam giác ADE cân tại A ( vì AD = AE )

=> \(\widehat{D}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)

Xét tam giác AHK cân tại A ( vì AH = AK )

\(\Rightarrow\widehat{AHK}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)

Từ (1) và (2) => D = AHK

mà 1 góc này ở vị trí đồng vị

=> HK // DE hay HK // BC ( đpcm ) 

Có j lên đây hỏi nha : Group Toán Học

25 tháng 12 2018

Xét tg AHB và tg AHC,ta có:

AH chung

gBAH=gCAH(tia phân giác của góc A cắt BC tại H)

AB=AC(gt)

=>tg AHB =tg AHC(c-g-c)

Xét tg ABC,có:AB=AC (gt)

=>tg ABC cân tại A

mà AH là tia phân giác

=>AH là đường cao

=>AH vuông góc vs BC

Ta có:g BAH+g ABH=g AHB=90*

và gDHB+gDBH=gBDH=90*

=>góc HAB = góc BHD

25 tháng 12 2018

gợi ý phần c

gọi F là giao điểm của AH và DE

Xét tg ADH và tg AEH,có

AH chung

ADH=AEH=90

DAH=EAH

=>tg ADH =tg AEH(ch-gn)

=>AD=AE

=>tg ADE cân tại A

mà AF là tia phân giác

=>AF vuông góc vs DE

ta có BHF=EFH=90

=>DE//BC

p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

4 tháng 5 2020

a) Vì AH = HD => EH là đg trung tuyến của tg ADE

Khi đó C thuộc đg trung tuyến EH (1)

Do tg ABC cân tại A

mà AH là đg cao của tg ABC

=> AH là đg trung trực của tg ABC

=> BH = CH

=> BH = CH = 1/2 BC

Lại do BC = CE

=> CH = 1/2 CE

hay CE = 2/3 EH (2)

Từ (1); (2) => C là trọng tâm tg ADE.

4 tháng 5 2020

Xét ΔAHBΔAHB và ΔAHCΔAHC có :

HAHA chung

HB=HCHB=HC ( AH là đường trung tuyến của BC )

AB=ACAB=AC ( ΔABCΔABC cân tại A )

Do đó : ΔAHB=ΔAHC(c−c−c)ΔAHB=ΔAHC(c−c−c)

⇒AHBˆ=AHCˆ⇒AHB^=AHC^ ( hai góc tương ứng )

Mà AHBˆ+AHCˆ=180oAHB^+AHC^=180o ( hai góc kề bù )

⇒AHBˆ=AHCˆ=180o2=90o⇒AHB^=AHC^=180o2=90o

Xét ΔAHEΔAHE và ΔHEDΔHED có :

HEHE chung

HA=HDHA=HD ( HE là đường trung tuyến của AD )

AHEˆ=DHEˆ(=90o)AHE^=DHE^(=90o)

Do đó : ΔAHE=ΔDHEΔAHE=ΔDHE ( hai cạnh góc vuông )

⇒AEHˆ=DEHˆ⇒AEH^=DEH^ ( góc tương ứng ) (*)

Vì C là trọng tâm của ΔAEDΔAED ⇒AM⇒AM là đường trung tuyến của DE )

⇒DM=ME⇒DM=ME

Xét ΔHEDΔHED vuông tại H có : HM là đường trung tuyến nối từ đỉnh H đến DE

⇒HM=DM⇒HM=DM (1)

Lưu ý : Trong tam giác vuông , đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền . Tức HM=12DEHM=12DE. Mà 12DE=DM12DE=DM⇒HM=DM⇒HM=DM

Trở lại vào bài :

Mặt khác DM=ME(cmt)DM=ME(cmt)(2)

Từ (1) và (2) ⇒HM=ME⇒HM=ME

⇒ΔHME⇒ΔHME cân tại M

⇒MHEˆ=MEHˆ⇒MHE^=MEH^

Dễ thấy MEHˆ=HEAˆ(cmt)MEH^=HEA^(cmt) ở cái (*)

⇒MHEˆ=HEAˆ⇒MHE^=HEA^

mà hai góc này ở vị trí so le trong

⇒HM⇒HM//AEAE (đpcm)