K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2022

Bạn tự vẽ hình nhá.

a, Vì tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)

Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H , có:

AB = AC (gt)

AH là cạnh chung

=> Tam giác AHB = Tam giác AHC ( cạnh huyền - cạnh góc vuông )

b, Vì Tam giác AHB = Tam giác AHC nên HB = HC ( hai cạnh tương ứng )

                                                                và \(\widehat{BAH}=\widehat{CAH}\) ( hai góc tương ứng )

c, Vì Tam giác AHB = Tam giác AHC nên \(\widehat{ABH}=\widehat{ACH}\) hay \(\widehat{KBH}=\widehat{ICH}\)

Xét tam giác HKB vuông tại K và tam giác HIC vuông tại I, có:

HB = HC ( cmt )

\(\widehat{KBH}=\widehat{ICH}\)

=> Tam giác HKB = Tam giác HIC ( cạnh huyền - góc nhọn )

22 tháng 1 2022

cảm ơn bạn nhé

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

26 tháng 3 2020

a, Xét tam giác AHB và tam giác AHC có

AB = AC ( giả thiết )

H1 = H2 ( = 90)

Ah chung

tam giác AHB = tam giác AHC ( c.g.c)

b, từ a, suy ra

- BH=HC (2 cạnh tương ứng)

- góc BAH=góc CAH (2 góc tương ứng)

c,Xét tam giác HKB và tam giác HIC có

HB = HC (từ câu b)

góc B = góc C (2 góc tương ứng)

Suy ra tam giác HKB = tam giác HIC (ch.gn)

Mik chỉ lm đc đến đây thôi còn câu d, mik ko bt lm

10 tháng 4 2020

Xét tgAHB và tg AHC có:

+AB=AC(gt)

+AH là cạnh chung

+góc BHA=góc CHA

=>tgAHB=tg AHC(c-g-c)

=>HB=HC,góc BAH=góc CAH

Các cặp tg vuông là:

BEH-HFC,VÌ HE và HC là 2 đường cao=>tgBEH và tgCFH là cặp tg vuông(g-c-g)

Gọi k là giao điểm của HA và EF,=>tgEHF là tg cân=>góc HEF=góc EFH=>EK=EF

=>MÀ AB=AC,EB=FC=>AE=AF=>Tg AEF là tg cân=>AK cũng là đường CAO

=> tgAEK và tg AFK là cặp tg vuông(c-g-c)

=>tg EKH Và tg EFH là cặp tg vuông(g-c-g)

=>tg AEH và tg AFH là cặp tg vuông(c-g-c)

Và cuối cùng là tg ABH và tg ACH(c-g-c)

+vì EF vuông góc với KH(cmt)và BC cũng vuông góc với KH=>EF//BC(ĐPCM)

12 tháng 4 2020

a, Xét tam giác AHB và tam giác AHC có:

            AH chung

            AB=AC (tam giác ABC cân tại A)

Vậy tam giác AHB= tam giác AHC (cạnh huyền-góc nhọn)

b,từ CMT: ta có:

      HB=HC

      Góc BAH= góc CAH

c,tam giác AHF=tam giác AHE(cạnh huyền AH chung,góc nhọn BAH =góc nhọn CAH)

   tam giác AHC= tam giác AHB(cạnh huyền AH chung, góc nhọn BAH =góc nhọn CAH)

   tam giác BEH =tam giác HFC(cạnh huyền BH=CH, góc nhọn EBH = góc nhọn FCH)

d,sorry bạn, câu này mik ko làm đc

7 tháng 3 2017

Bài 1 xét hai tam giác AHB và tam giác AHC có:

AC= AB (cân)

AH là cạnh chung

góc ABH= gó ACH 

=> hai tam giác bằng nhau theo trường hợp cạnh huyền góc nhọn

bài 2 

a) ta có tam giác ABC cân 

và AH là đường cao => AH cũng là đường trung tuyến của tam giác ABC

hoặc dùng kết quả 2 tam giác bằng nhau ở câu 1 để suy ra cũng dc

b)từ kết quả baì 1  suy ra hai góc bằng nhau

ta có tam giác ABH vuông tại H

HB=HC+1/2BC=5

sử dụng pytago

AH2  = AB2- BH2