Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔCDB có
CA,DK là trung tuyến
CA cắt DK tại M
=>M là trọng tâm
=>CM=2/3CA=16/3(cm)
Ta có: EA = EC
FB=FC
=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ
=> ABC là tam giác vuông cân tại A
Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2
AE = BC = AB căn2, pitago vào tam giác vuông EDB
=> BE2 = 5AB2 (2)
Từ (1) và (2)suy ra BE=BF
Vậy vuông góc chứng minh BEF =45 độ
Giải :
Có EA=EC
FB=FC
SUY RA FC/EC=FB/EA
theo Talét đảo suy ra AE//BF
2.C = 45 độ suy ra ABC là tam giác vuông cân tại A
XÉT tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD=BD=ABcăn2/2
AE=BC=ABcăn2, pitago vào tam giác vuông EDB suy ra BE^2=5AB^2 (2)
Từ (1) và (2)suy ra BE=BF
CÁi vuông góc chứng minh BEF =45 độ
Giả sử tam giác ABC vuông tại A óc góc B = 60 độ
Để AI = IM thì I là trung điểm của AM
=> BI là trung tuyến cũng là đường cao
=> tam giác ABM cân tại B có góc B = 60 độ
=> tam giác ABM đều
Tương tự cho MK và KD.
Vậy khi tam giác ABC vuông tại A với AB < AC và góc B = 60 độ thì AI = IM = MK = KD.
xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD
Do K là trung điểm cạnh huyền BC nên AK là đường trung tuyến ứng với cạnh huyền. Suy ra KA = KB= KC.
Do KD = KA nên KA = KB = KC = KD, hay AD = BC.
Xét tam giác KAC có KA = KC nên nó là tam giác cân. Vậy thì \(\widehat{KCA}=\widehat{KAC}\)
Xét tam giác ABC và CDA có: AD = BC, AC chung, \(\widehat{KCA}=\widehat{KAC}\) nên \(\Delta ABC=\Delta CDA\left(c-g-c\right)\Rightarrow\widehat{DCA}=\widehat{BAC}=90^o\)
Hay \(DC⊥AC.\)