K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2020

a,vì M là trung điểm của BC (gt)

=>MB=MC

Xét tam giác ABM và tam giác DCM, có:

MB=MC(cmt)

^AMB=^DMC(đối đỉnh)

MA=MD

=> tam giác ABM = tamgiác DCM

b, vì tam giác ABM = tam giác DCM (cmt)

=> ^BAM=^CDM(2 góc t/ư)

Mà 2 góc này ở VT SLT

=> AB//CD

c, Vì AH vuống góc vs BC(gt)

=> AHM=90

Vì DK vuông góc vs BC(gt)

=> DKM=90

Xét tam giác AHM và tam giác KDM,có: 

^AHM=^DKM(=90)

MA=MD(Gt)

AMH=^DMK(đối đỉnh)

=> tam giác AHM= tam giác DKM( cạnh huyền - góc nhọn)

=> MH = MK ( 2 cạnh t/ư)

=> M là trung điểm của HK

học tốt >.<

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔFMC

=>EM=FM

=>M là trung điểm của EF

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔACB cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

a: Xét ΔABM và ΔDCM có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

DO đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM la đường cao

21 tháng 12 2015

Đa số những người hỏi câu hỏi về hình học đều muốn mọi người vẽ hình hộ

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có

M là trung điểm của AD
M là trung điểm của BC

Do đó:ABDC là hình bình hành

Suy ra: AB//CD

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM la đường cao

15 tháng 12 2023

loading...  loading...  

1 tháng 2 2022
 

Tham Khảo :

Bạn tự vẽ hình nha

a) Xét t/g ABM và t/g DCM có:

BM = CM (gt)

AMB = DMC ( đối đỉnh)

MA = MD (gt)

Do đó, t/g ABM = t/g DCM (c.g.c) (đpcm)

b) t/g ABM = t/g DCM (câu a)

=> ABM = DCM (2 góc tương ứng)

Mà ABM và DCM là 2 góc ở vj trí so le trong nên AB // DC (đpcm)

c) t/g AMC = t/g AMB (c.c.c)

=> AMC = AMB (2 góc tương ứng)

Mà AMC + AMB = 180o ( kề bù)

=> AMC = AMB = 90o

=> AM _|_ BC (đpcm)

d) AB // CD => BAD = ADC = 30o (so le trong)

Mà BAD = CAD do t/g AMB = t/g AMC (câu c)

=> BAD + CAD = 2.BAD = 2.30o = 60o

T/g ABC cân tại A, có BAC = 60o

=> t/g BAC đều