Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,vì M là trung điểm của BC (gt)
=>MB=MC
Xét tam giác ABM và tam giác DCM, có:
MB=MC(cmt)
^AMB=^DMC(đối đỉnh)
MA=MD
=> tam giác ABM = tamgiác DCM
b, vì tam giác ABM = tam giác DCM (cmt)
=> ^BAM=^CDM(2 góc t/ư)
Mà 2 góc này ở VT SLT
=> AB//CD
c, Vì AH vuống góc vs BC(gt)
=> AHM=90
Vì DK vuông góc vs BC(gt)
=> DKM=90
Xét tam giác AHM và tam giác KDM,có:
^AHM=^DKM(=90)
MA=MD(Gt)
AMH=^DMK(đối đỉnh)
=> tam giác AHM= tam giác DKM( cạnh huyền - góc nhọn)
=> MH = MK ( 2 cạnh t/ư)
=> M là trung điểm của HK
học tốt >.<
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)
Do đó: ΔEMB=ΔFMC
=>EM=FM
=>M là trung điểm của EF
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//DC
c: Ta có: ΔACB cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
DO đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//DC
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM la đường cao
Đa số những người hỏi câu hỏi về hình học đều muốn mọi người vẽ hình hộ
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó:ABDC là hình bình hành
Suy ra: AB//CD
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM la đường cao
Tham Khảo :
Bạn tự vẽ hình nha
a) Xét t/g ABM và t/g DCM có:
BM = CM (gt)
AMB = DMC ( đối đỉnh)
MA = MD (gt)
Do đó, t/g ABM = t/g DCM (c.g.c) (đpcm)
b) t/g ABM = t/g DCM (câu a)
=> ABM = DCM (2 góc tương ứng)
Mà ABM và DCM là 2 góc ở vj trí so le trong nên AB // DC (đpcm)
c) t/g AMC = t/g AMB (c.c.c)
=> AMC = AMB (2 góc tương ứng)
Mà AMC + AMB = 180o ( kề bù)
=> AMC = AMB = 90o
=> AM _|_ BC (đpcm)
d) AB // CD => BAD = ADC = 30o (so le trong)
Mà BAD = CAD do t/g AMB = t/g AMC (câu c)
=> BAD + CAD = 2.BAD = 2.30o = 60o
T/g ABC cân tại A, có BAC = 60o
=> t/g BAC đều