K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

bạn ơi để đến tối mình gửi bài nhé có đc ko 

9 tháng 4 2019

câu b 100% sai đề DM cắt AC tại M chứ ko thể nào là I . 

27 tháng 2 2018

a)  Áp dunhj định lý Py-ta-go vào  tam giác vuông  ABC  ta có:

                    AB2 + AC2 = BC2

            \(\Leftrightarrow\)\(BC^2=3^2+4^2=25\)

           \(\Leftrightarrow\)\(BC=\sqrt{25}=5\)

b)  Xét tam giác ABM  và   tam giác CDM  có:

           BM  =  DM  (gt)

           góc AMB  =  góc CMD   (dđ)

           MA  =  MC    (gt)

suy ra:  tam giác  ABM  =  tam giác CDM   (c.g.c)

suy ra:   góc BAM  =  góc DCM  =  900

suy ra:  DC  vuông góc với  AC

27 tháng 2 2018
Bạn ơi mình cần câu "c" với câu "d" nữa chỉ mình đi
9 tháng 4 2018

Áp dụng định lý Pytago ta có:

AB2+AC2=BC2

=>BC2=32+42=25

=>BC=\(\sqrt{25}\)=5

b)Xét tam giác ADM và tam giác CDM có:

BM=DM(gt)

góc AMD= góc CMD(đối đỉnh)

MA=MC(gt)

=>tam giác ABM = tam giác CDM(c.g.c)

=>góc BAM= góc DCM =90o

=>DC là  vuông góc với AC

9 tháng 4 2018

mình cần câu c, d 

a: BC=căn 3^2+4^2=5cm

AB<AC<BC

=>góc C<góc B<góc A

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB//CD

=>CD vuông góc CA

c: CM=1/2CA=2cm

Xét ΔCBD có

CM,BN là trung tuyến

CM cắt BN tại H

=>H là trọng tâm

=>CH=2/3CM=2/3*2=4/3(cm)

d: Xét ΔDBC có

DKlà trung tuyến

H là trọng tâm

=>D,K,H thẳng hàng

a)

Sửa đề: Chứng minh ΔMAB=ΔMCD và \(\widehat{MCD}=90^0\)

Xét ΔMAB và ΔMCD có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD(gt)

Do đó: ΔMAB=ΔMCD(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MCD}=90^0\)(đpcm)

b) Xét ΔDMA và ΔBMC có 

DM=BM(gt)

\(\widehat{DMA}=\widehat{BMC}\)(hai góc đối đỉnh)

MA=MC(M là trung điểm của AC)

Do đó: ΔDMA=ΔBMC(c-g-c)

Suy ra: \(\widehat{ADM}=\widehat{CBM}\)(hai góc tương ứng)

mà \(\widehat{ADM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong

nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)

c)

Ta có: MB=MD(gt)

mà D,M,B thẳng hàng(gt)

nên M là trung điểm của BD

Xét ΔMAB vuông tại A và ΔMAK vuông tại A có

MA chung

AB=AK(gt)

Do đó: ΔMAB=ΔMAK(hai cạnh góc vuông)

Suy ra: MB=MK(hai cạnh tương ứng)

mà \(BD=2\cdot MB\)(M là trung điểm của BD)

nên \(BD=2\cdot MK\)(đpcm)

14 tháng 2 2021

cảm ơn bn nhiều

 

20 tháng 12 2016

khó quá

em mới học lớp 5

14 tháng 12 2017

Vẽ hình xong giải cho

15 tháng 12 2017
nhanh giùm với
16 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)

25 tháng 8 2021

TL:

1) Xét tam giác ABM và tam giác CDM có:

- AM = CM

- Góc AMB = góc CMD (2 góc đối đỉnh)

- BM = DM

-> Tam giác ABM = tam giác CDM (c.g.c)

2) Vì tam giác ABM = tam giác CDM 

-> Góc MAB = góc MCD = 90o

-> MC vuông góc vs CD hay AC vuông góc vs DC 

3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:

- M là trung điểm của AC (giả thiết)

- MF//DC (cmt)

Nên MF là đường trung trực của tam giác ACD

-> F là trung điểm của AD

EM RẢNH NÊN EM MỚI TL CHỨ LÂU NHƯ NÀY EM KO RẢNH CHẮC KO TL ĐÂU

6 tháng 2 2022

TL:

1) Xét tam giác ABM và tam giác CDM có:

- AM = CM

- Góc AMB = góc CMD (2 góc đối đỉnh)

- BM = DM

-> Tam giác ABM = tam giác CDM (c.g.c)

2) Vì tam giác ABM = tam giác CDM 

-> Góc MAB = góc MCD = 90o

-> MC vuông góc vs CD hay AC vuông góc vs DC 

3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:

- M là trung điểm của AC (giả thiết)

- MF//DC (cmt)

Nên MF là đường trung trực của tam giác ACD

-> F là trung điểm của AD

1 tháng 12 2017

a) xét tam giác AMB và tam giác CMD  có: 

    MA=MB (GT)

    góc DMC= góc BMA (2 GÓC ĐỐI ĐỈNH)

    MA=MC(GT)

   suy ra tam giác AMB= tam giác CMD (CGC)

b) vì tam giác ABM= tam giác CDM (cmt)

    suy ra góc CDM= góc ABM (2 góc tương ứng)

    mà 2 góc này ở vị trí so le trong suy ra CD//AB

c) xét tam giác ABD và tam giác CDB có:

    góc CDB= góc ABD (CMT)

    AC chung

    góc DCA= góc CAB(CD//AB)

    suy ra tam giác ABD= tam giác CDB (GCG)

    suy ra AD=BC (2 cạnh tương ứng)

    và góc ADB= góc CBD (2 góc tương ứng)

    suy ra AD=DF+AF

    mà EC=EB=1 phần 2 CB (GT)

    suy ra EB=1/2 AD  (1)

    xét tam giác DMF và tam giác BME có

    góc FDM= góc EBM (CMT)

    MB=MD (GT)

    góc DMF= góc BME (2 góc đối đỉnh)

    suy ra tam giác DFM=tam giác BME (GCG)

    suy ra DF=EB (2 cạnh tương ứng)    (2)

    từ (1) và (2) suy ra DF=FA=1/2 AD

    hay F là trung điểm của AD

18 tháng 5 2016

a) 

a)Sao lại chứng minh  tam giác ACD= tam giác DMA 

Mà tam giác DMC<ADC(xem lại)

b)Xét tam giác DMC và tam giác BMA

       MB=MD(gt)

       DMC=AMB(đđ)

       MA=MC(Vì M là trung điểm AC)

⇒⇒tam giác DMC=tam giác BMA(c.g.c)

⇒⇒AB=DC(cặp cạnh tương ứng)(1)

Mà AB=AC(vì tam giác ABC cân)(2)

       Từ (1) và (2) suy ra:DC=AC

Vậy tam giác ACD cân tại D

c/

+ Xét tam giác BDE có

DM=BM => EM là trung tuyến thuộc cạnh BD của tg BDE (1)

+ Ta có

CA=CE (đề bài)

MA=MC (đề bài)

=> CE=2.MC hay MC=1/3ME (2)

Từ (1) và (2) =>C là trọng tâm của tam giác BDE => DC là trung tuyến thuộc cạnh BE của tg BDE => K là trung điểm của BE

18 tháng 5 2016

       MA=MC(Vì M là trung điểm AC)

$⇒⇒$⇒⇒tam giác DMC=tam giác BMA(c.g.c)

$⇒⇒$⇒⇒AB=DC(cặp cạnh tương ứng)(1)

Mà AB=AC(vì tam giác ABC cân)(2)

       Từ (1) và (2) suy ra:DC=AC

Vậy tam giác ACD cân tại D

c/

+ Xét tam giác BDE có

DM=BM => EM là trung tuyến thuộc cạnh BD của tg BDE (1)

+ Ta có

CA=CE (đề bài)

MA=MC (đề bài)

=> CE=2.MC hay MC=1/3ME (2)

Từ (1) và (2) =>C là trọng tâm của tam giác BDE => DC là trung tuyến thuộc cạnh BE của tg BDE => K là trung điểm của BE