Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
c: góc FBC+góc C=90 độ
góc MAC+góc C=90 độ
=>góc FBC=góc MAC
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a: AB=căn 10^2-6^2=8cm
=>BM=4cm
b: Xét ΔMAC và ΔMBD có
MA=MB
góc AMC=góc BMD
MC=MD
=>ΔMAC=ΔMBD
c: AC+BC=BD+BC>CD=2CM
a: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
b: Xét ΔMEB và ΔMFC có
ME=MF
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMEB=ΔMFC
=>\(\widehat{MEB}=\widehat{MFC}\)
=>\(\widehat{MFC}=90^0\)
=>CF\(\perp\)AD
c: Xét tứ giác BFCE có
M là trung điểm chung của BC và FE
=>BFCE là hình bình hành
=>BF//CE và BF=CE
Ta có: BF//CE
B\(\in\)FG
Do đó: BG//CE
Ta có: BF=CE
BF=BG
Do đó: BG=CE
Xét tứ giác BGEC có
BG//EC
BG=EC
Do đó: BGEC là hình bình hành
=>BE cắt GC tại trung điểm của mỗi đường
mà H là trung điểm của BE
nên H là trung điểm của GC
=>G,H,C thẳng hàng
a: ΔADE vuông cân tại A
=>góc DEA=45 độ
b: góc HEC+góc HCE=45+45=90 độ
=>EH vuông góc BC
c: Xét ΔCBE có
EH,BA là đường cao
EH cắt BA tại D
=>D là trực tâm
=>CD vuông góc BE
d: góc HDA=180-45=135 độ
=>góc BDE=135 độ
a) Xét 2 tam giác ABM và ACM:
+ MB=MC
+ AB=AC
+ Cạnh AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Xét 2 tam giác ANK và BNC
+ NK=NC
+ NA=NB
+ Góc ANK = góc BNC ( hai góc đối đỉnh )
\(\Rightarrow\Delta ANK=\Delta BNC\left(c.g.c\right)\)
\(\Rightarrow AK=BC\)( hai cạnh tương ứng )
Mà M là trung điểm của BC nên BC=2MC
\(\Rightarrow AK=2.MC\)
c) Ta có \(\widehat{AKN}=\widehat{BCN}\)( hai góc tương ứng của hai tam giác bằng nhau )
Mà hai góc AKN và BCN là cặp góc so le trong
\(\Rightarrow AK//BC\)
Vì hai tam giác ABM=ACM nên góc AMB= góc AMC ( hai góc tương ứng )
Mà góc AMB + AMC = 180 độ ( kề bù )\
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\Rightarrow AM\perp BC\)
Mà AK//BC
\(\Rightarrow AM\perp AK\)
a: Xét ΔMAC và ΔMBE có
MA=MB
\(\widehat{AMC}=\widehat{BME}\)
MC=ME
Do đó: ΔMAC=ΔMBE
b: Xét tứ giác ACBE có
M là trung điểm của AB
M là trung điểm của CE
Do đó:ACBE là hình bình hành
Suy ra: AC//BE
c: \(\widehat{ACM}=90^0-52^0=38^0\)
a) Xét tam giác MAC và tam giác MBE:
+ MA = MB (M là trung điểm của AB).
+ MC = ME (gt).
+ \(\widehat{AMC}=\widehat{BME}\) (đối đỉnh).
\(\Rightarrow\) Tam giác MAC = Tam giác MBE (c - g - c).
b) Ta có: \(\widehat{MAC}=\widehat{MBE}\) (Tam giác MAC = Tam giác MBE).
Mà 2 góc ở vị trí so le trong.
\(\Rightarrow\) AC // BE (dhnb).
c) Tam giác AMC vuông tại A (\(\widehat{A} =\) \(90^o\)).
\(\Rightarrow\) \(\widehat{AMC}+\widehat{ACM}=\) \(90^o\).
Mà \(\widehat{AMC}=\) \(52^o\left(gt\right).\)
\(\Rightarrow\) \(\widehat{ACM}=\) \(38^o.\)