Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm hơi tắt chút do ngại trình bầy cái định lý pi - ta - go ở tam giác BDE
a) Xét ΔAKB và ΔAKC có:
AB=AC(gt)
AK:cạnh chung
BK=CK(gt)
=> ΔAKB=ΔAKC(c.c.c)
=> AKBˆ=AKCˆAKB^=AKC^
Mà: AKBˆ+AKCˆ=180oAKB^+AKC^=180o
=> AKBˆ=AKCˆ=90oAKB^=AKC^=90o
=> AK⊥BCAK⊥BC
b) Vì: EC⊥BC(gt)EC⊥BC(gt)
Mad: AK⊥BC(cmt)AK⊥BC(cmt)
=> EC//AK
1: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
DO đó: ΔABD=ΔECD
2: Xét tứ giác ABEC có
D là trung điểm của AE
D là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: EC//AB
hay EC⊥AC
4:Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=1/2BC
1: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
DO đó: ΔABD=ΔECD
2: Xét tứ giác ABEC có
D là trung điểm của AE
D là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: EC//AB
hay EC⊥AC
4:Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=1/2BC
a: Xét ΔEBD vuông tại E và ΔFCD vuông tại F có
BD=CD
\(\widehat{B}=\widehat{C}\)
Do đó: ΔEBD=ΔFCD
Suy ra: EB=FC
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là trung trực của BC
c: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
DE=DF
Do đó: ΔAED=ΔAFD
d: Xét ΔABC có AE/AB=AF/AC
nên EF//BC