Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: BC=10cm
a: AC=8cm
Xét ΔABC vuông tại A có sin B=AC/BC=4/5
nên góc B=53 độ
=>góc C=37 độ
b: \(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
\(BH=\dfrac{6^2}{10}=3.6\left(cm\right)\)
CH=BC-BH=6,4cm
c: AM=BC/2=5cm
\(HM=\sqrt{5^2-4.8^2}=1.4\left(cm\right)\)
\(S=\dfrac{1.4\cdot4.8}{2}=3.36\left(cm^2\right)\)
a, xét tam giác ABC ta có
AH là đường cao=> góc AHB=90 độ
lại có \(AD\perp BE\)=> góc ADB=90 độ
=>góc AHB= góc ADB=90 độ
mà D,H là 2 đỉnh liên tiếp của tứ giác ADHB
=> tứ giác ADHB nội tiếp đường tròn đường kính AB
lấy điểm O là trung điểm AB=>O là tâm đường tròn ngoại tiếp tứ giác ADHB
b, xét tam giác ABC có BE là phân giác=> góc HBD= góc ABD
lại có tam giác ABC vuông tại A=> góc ABE+ góc AEB=90 độ
hay góc ABD+ góc AED =90 độ(1)
xét tam giác ADE vuông tại E (vì AD\(\perp BE\))
=> góc EAD+góc AED=90 độ(2)
từ(1)(2)=> góc ABD= góc EAD
=>góc EAD= góc HBD(= góc ABD)
c, xét đường tròn(O) => OA=OH=OB=1/2.AB=\(\dfrac{a}{2}\)=R
có OH=OB=>tam giác BOH cân tại O
lại có góc ABC=60 độ hay góc OBH=60 độ=> tam giác OBH đều
=> góc OBH=góc BOH=60 độ=>góc AOH=120 độ( kề bù)
=>góc AOH=số đo cung AOH=120 độ( góc ở tâm)
=> S quạt AOH=\(\dfrac{\pi.R^2.n}{360}=\dfrac{\pi.\left(\dfrac{a}{2}\right)^2.120}{360}=\dfrac{\pi.a^2.30}{360}=\dfrac{\pi.a^2}{12}\)
Bài 2:
a: AB/3=AC/4=k
=>AB=3k; AC=4k
Ta có: \(AB^2+AC^2=BC^2\)
=>\(25k^2=100\)
=>k=2
=>AB=6cm; AC=8cm
b: Xét ΔBAC có BM là phân giác
nên MA/AB=MC/BC
=>MA/3=MC/5
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{MA}{3}=\dfrac{MC}{5}=\dfrac{8}{8}=1\)
=>MA=3cm
Bài 3:
a: cos B=0,8 nên AC/BC=4/5
=>AC=8cm
=>AB=6cm
b: sin C=cos B=4/5
cos C=3/5
tan C=4/3
cot C=3/4
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔACE vuông tại A có AF là đường cao ứng với cạnh huyền CE, ta được:
\(CF\cdot CE=CA^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AD là đường cao ứng với cạnh huyền BC, ta được:
\(CD\cdot CB=CA^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(CF\cdot CE=CD\cdot CB\)