Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AC = 10cm Þ SABC =37,5 (cm2)
b) Chứng minh được M A E ^ = A M E ^ (cùng = A B C ^ ) Þ AE = ME. Cmtt ta có AE = NE. Từ đó suy ra ME = NE.
c) Chứng minh EH//GF (//MB) và GE//FH (//NC) Þ EGFH là hình bình hành. Chứng minh được H E G ^ = B A C ^ = 90 0 ⇒ E G F H là hình chữ nhật. Suy ra GH đi qua trung điểm của EF.
S E G F H = H E . E G = 1 2 M B . 1 2 N C = 1 4 . 2 3 A B . 2 3 A C = 25 3 ( c m 2 )
Mà S E G F H = 4. S ⇒ I H F S I H F = 25 12 c m 2
a) Ta có: HM⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: HM//AB(Định lí 1 từ vuông góc tới song song)
Xét ΔCAB có M là trung điểm của BC(gt)
MH//AB(cmt)
Do đó: H là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Bạn tham khảo
a. Vì M là trung điểm của AB
N là trung điểm của AC
=> MN là đường trung bình của Δ ABC
=> MN // BC
=> MNCB là hình thang
b. Xét Δ AMN và Δ CEN có:
MN = EN (gt)
góc ANM = góc CNE (đối đỉnh)
AN = CN (gt)
=> Δ AMN = Δ CEN (c.g.c.)
=> góc MAN = góc ECN
Mặt khác 2 góc này ở vị trí so le trong
=> AB // EC
=> MB // EC (1)
Mặt khác MN // BC (theo câu a) => ME // BC (2)
Từ (1) và (2) => MECB là hình bình hành