K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: BD+CD=BC(D nằm giữa B và C)

nên BC=7,5+10=17,5(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{AB}{AC}=\dfrac{7.5}{10}=\dfrac{3}{4}\)

\(\Leftrightarrow AB=\dfrac{3}{4}AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=17.5^2\)

\(\Leftrightarrow AC=14\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{3}{4}\cdot AC=\dfrac{3}{4}\cdot14=10,5\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH\cdot17.5=10.5\cdot14\\BH\cdot17.5=10.5^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AH=8,4\left(cm\right)\\BH=6,3\left(cm\right)\end{matrix}\right.\)

 

9 tháng 11 2021

tính chất tia phân giác của tam giác là gì vậy bạn

 

NV
21 tháng 7 2021

\(BC=BD+CD=17,5\left(cm\right)\)

Áp dụng định lý phân giác:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)

Áp dụng Pitago:

\(AB^2+AC^2=BC^2\Leftrightarrow\left(\dfrac{3}{4}AC\right)^2+AC^2=\left(17,5\right)^2\)

\(\Leftrightarrow AC^2=196\Rightarrow AC=14\)

\(\Rightarrow AB=10,5\left(cm\right)\)

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=8,4\left(cm\right)\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=6,3\left(cm\right)\)

\(HD=BD-BH=1,2\left(cm\right)\)

NV
21 tháng 7 2021

undefined

20 tháng 8 2018

bn tham khảo link này nha

https://olm.vn/hoi-dap/question/1267169.html

Xét ΔABC có

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)

hay \(AB=\dfrac{3}{4}AC\)

Ta có: BD+CD=BC

nên BC=17,5cm

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=\dfrac{1225}{4}\)

\(\Leftrightarrow AC^2=196\)

hay AC=14cm

\(\Leftrightarrow AB=\dfrac{3}{4}AC=10.5\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=8.4\left(cm\right)\\BH=6.3\left(cm\right)\end{matrix}\right.\)

25 tháng 8 2017

  f(x) = (x2 + x + 1)(x2 + x + 2) – 12

          Đặt x2 + x + 1 = y   x2 + x + 2 = y + 1

f(x) = y(y + 1) – 12

                 = y2 + y – 12

                 = y2 – 3y + 4y – 12

                          = y(y – 3) + 4(y – 3)

                 = (y – 3)(y + 4)

          Thay y = x2 + x + 1 , ta được:

          f(x) = (x2 + x – 2)(x2 + x + 5)

          Đến đây ta phân tích tiếp:

          x2 + x – 2 = x2 – x + 2x – 2

                         = x(x – 1) + 2(x – 1)

                          = (x – 1)(x + 2)

x2 + x + 5 = x2 + x + 

Vì nên 

          Và x2 +x + 5 không thể phân tích được nữa.

     Kết quả: f(x) = (x –1)(x + 2)(x2 + x +5).

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)