K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 7 2021

Áp dụng hệ thức lượng:

\(AB^2=BH.BC=a.\sqrt{AB^2+AC^2}\Rightarrow AB^4=a^2\left(AB^2+AC^2\right)\) (1)

Lại có: \(S_{ABC}=\dfrac{1}{2}AB.AC\Rightarrow AB.AC=4\sqrt{3}a^2\Rightarrow AC^2=\dfrac{48a^4}{AB^2}\)

Thế vào (1):

\(AB^4=a^2\left(AB^2+\dfrac{48a^2}{AB^2}\right)\Leftrightarrow AB^6-a^2.AB^4-48a^6=0\)

\(\Leftrightarrow\left(AB^2-4a^2\right)\left(AB^4+3AB^2.a^2+12a^4\right)=0\)

\(\Leftrightarrow AB^2=4a^2\)

\(\Leftrightarrow AB=2a\)

\(\Rightarrow AC=\dfrac{4\sqrt{3}a^2}{AB}=2a\sqrt{3}\)

\(BC=\sqrt{AB^2+AC^2}=4a\)

NV
7 tháng 7 2021

Đề bài thiếu dữ liệu

Chỉ có BH thì không thể tính được AB, AC, BC

7 tháng 7 2021

đủ mak

 

19 tháng 9 2021

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

20 tháng 11 2021

\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)

6 tháng 7 2023

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

2 tháng 9 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Ta có:  A B 2   +   A C 2   =   6 2   +   4 , 5 2   =   7 , 5 2   =   B C 2

nên tam giác ABC vuông tại A. (đpcm)

Để học tốt Toán 9 | Giải bài tập Toán 9

= >   ∠ B   =   37 ° = >   ∠ C   =   90 °   -   ∠ B   =   90 °   -   37 °   =   53 °

Mặt khác trong tam giác ABC vuông tại A, ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

=> AH = 3,6 cm

b) Gọi khoảng cách từ M đến BC là MK. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta thấy SMBC = SABC khi MK = AH = 3,6 cm

Do đó để SMBC = SABC thì M phải nằm trên đường thẳng song song và cách BC một khoảng là 3,6 cm (có hai đường thẳng như trên hình).

28 tháng 6 2021

a.     + CH = 10 - 3.6 = 6.4 (cm)

     - Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào ΔABC ta có :

         + \(AH^2=BH.CH\)

      \(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4.8\) (cm)

         + \(AB^2=BC.BH\)

      \(\Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\) (cm)

       + \(AC^2=BC.CH\)

      \(\Rightarrow AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\) (cm)

b.       \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)

c.       \(P_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)

10 tháng 7 2021

undefined

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{30}{7}\left(cm\right)\)

Diện tích tam giác ABD là:

\(S_{ABD}=\dfrac{AH\cdot BD}{2}=\dfrac{4.8\cdot\dfrac{30}{7}}{2}=2.4\cdot\dfrac{30}{7}=\dfrac{72}{7}\left(cm^2\right)\)