K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2016

2 tam giác đồng dạng

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:

Xét tam giác $ABH$ và $CAH$ có:

$\widehat{AHB}=\widehat{CHA}=90^0$

$\widehat{ABH}=\widehat{CAH}$ (cùng phụ góc $\widehat{BAH}$)

$\Rightarrow \triangle ABH\sim \triangle CAH$ (g.g)

$\Rightarrow \frac{AB}{CA}=\frac{BH}{AH}=\frac{BH:2}{AH:2}=\frac{BP}{AQ}$

Xét tam giác $ABP$ và $CAQ$ có:

$\widehat{ABP}=\widehat{CAQ}$ (cùng phụ $\widehat{BAH}$)

$\frac{AB}{CA}=\frac{BP}{AQ}$ (cmt)

$\Rightarrow \triangle ABP\sim \triangle CAQ$ (c.g.c)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Hình vẽ:

undefined

30 tháng 3 2021

                               Bài giải

a) Xét tam giác ABH và CAH có:

  \(\widehat{AHB}=\widehat{CHA}\left(=90^o\right)\)

\(\widehat{BAH}=\widehat{ACH}\left(=90^o-\widehat{ABC}\right)\)
\(\Rightarrow\Delta ABH\infty\Delta CAH\left(g.g\right)\)

 \(\Delta ABH\infty\Delta CAH\left(g.g\right)\) (câu a)  \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}=\dfrac{BH\text{ : }2}{AH\text{ : 2}}=\dfrac{BP}{AQ}\)

Xét \(\Delta ABP \text{và }\Delta CAQ\) có: BPAQ=ABAC

                                        \(\widehat{CAH}=\widehat{ABH}\left(=90^o-\widehat{BAH}\right)\)

\(\Rightarrow\Delta ABP\infty\Delta CAQ\left(c.g.c\right)\)

b, Ta có: PQ là đg trung bình của\(\Delta ABH\Rightarrow\text{ }PQ\text{ // }AB\text{ }\Rightarrow\text{ }PQ\perp AC\)  

Mà AHPC  => Q là trực tâm của \(\Delta APC\)

\(\Rightarrow\text{ }AP\perp CQ\)

NM
21 tháng 12 2020

A B C H D E O P Q

câu a, dễ thấy tứ giác AEHD có 3 góc A=E=D=90 độ nên AEHD là hình chữ nhật, do đó AH=DE.

b.Xét tam giác BHD vuông tại D và có P là trung điểm BH do đso

\(\widehat{PDH}=\widehat{PHD}\)mà \(\widehat{PHD}=\widehat{QCE}\)( đồng vị)

và \(\widehat{QCE}=\widehat{QEC}\)

do đó ta có \(\widehat{PDH}=\widehat{QEC}\) mà HD//CE nên DP //QE . do đó DEPQ là hình thang

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng vơi ΔHAC
b: Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC
c: \(AH=\sqrt{10^2-8^2}=6\left(cm\right)\)

HB=6^2/8=4,5cm

BC=8+4,5=12,5cm

S=6*12,5/2=37,5cm2