K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
17 tháng 11 2022
a: Xét tứ giác AEMD có
góc AEM=góc ADM=góc DAE=90 độ
nên AEMD là hình chữ nhật
b: Vì M đối xứng với N qua AB
nên ABvuông góc với MN tại E và E là trung điểm của MN
Xét tứ giác AMBN có
E là trung điểm chung của AB và MN
nên AMBN là hình bình hành
mà MA=MB
nên AMBN là hình thoi
c: Xét tứ giác ANMC có
NM//AC
NM=AC
Do đó: ANMC là hình bình hành
=>AM cắt CN tại trung điểm của mỗi đường
=>C,O,N thẳng hàg
a: Xét ΔAHB vuông tại H có HM là đừog cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đừog cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b: \(S_{ABC}=\dfrac{2\cdot5}{2}=5\left(cm^2\right)\)
Xét ΔAMN và ΔACB có
AM/AC=AN/AB
góc A chung
DO đó; ΔAMN đồg dạng với ΔACB
Suy ra: \(\dfrac{S_{AMN}}{S_{ACB}}=\left(\dfrac{MN}{CB}\right)^2=\dfrac{4}{25}\)
\(\Leftrightarrow S_{AMN}=\dfrac{4}{25}\cdot5=\dfrac{4}{5}\left(cm^2\right)\)
\(\Leftrightarrow S_{AMHN}=2\cdot S_{AMN}=\dfrac{8}{5}\left(cm^2\right)\)