Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=92+122=225
BC=15cm
* AH.BC=AB.AC
AH.15=9.12
AH.15=108
AH=7,2cm
\(sinB=\dfrac{4}{5};cosB=\dfrac{3}{5};tanB=\dfrac{4}{3};cotanb=\dfrac{3}{4}\)
\(=>sinC=\dfrac{3}{5};cosC=\dfrac{4}{5};tanC=\dfrac{3}{4};cotanC=\dfrac{4}{3}\)
b)
tam giác ABC vuông tại A có
AC.AK=AH2
HB.HC=AH2
=>AC.AK=HB.HC
\(=>\dfrac{AC}{HC}=\dfrac{HB}{AK}\)
b: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
a: BC=căn 6^2+8^2=10cm
BH=AB^2/BC=3,6cm
CH=10-3,6=6,4cm
sin ABC=AC/BC=4/5
=>góc ABC=53 độ
b: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
=>AE/AC=AF/AB
=>ΔAEF đồng dạng với ΔACB
c: góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
góc KAC+góc AFE
=góc AHE+góc KCA
=góc ABC+góc ACB=90 độ
=>AK vuông góc EF
a, HS tự chứng minh
b, HS tự chứng minh
c, HS tự chứng minh
d, ∆MIH:∆MAB
=> M H M B = I H A B = 2 E H 2 F B = E H F B
=> ∆MHE:∆MBF
=> M F A ^ = M E K ^ (cùng bù với hai góc bằng nhau)
=> KMEF nội tiếp => M E F ^ = 90 0
a) Xét tứ giác \(AKHI\)có: \(\widehat{KAI}=\widehat{AKH}=\widehat{HIA}=90^o\)
nên tứ giác \(AKHI\)có ba góc vuông nên \(AKHI\)là hình chữ nhật.
b) \(\Delta AKH=\Delta KAI\left(c.g.c\right)\)
\(\Rightarrow\widehat{AHK}=\widehat{KIA}\)(hai góc tương ứng)
mà \(\widehat{AHK}=\widehat{ACB}\)(vì cùng phụ với \(\widehat{HAC}\))
nên \(\widehat{KIA}=\widehat{ACB}\)
Xét tam giác \(AIK\)và tam giác \(ACB\)có:
\(\widehat{IAK}=\widehat{CAB}\)(góc chung)
\(\widehat{KIA}=\widehat{BCA}\)(cmt)
\(\Rightarrow\Delta AIK~\Delta ACB\left(g.g\right)\)
\(\Rightarrow\frac{AI}{AC}=\frac{AK}{AB}\)(hai cặp cạnh tương ứng)
\(\Rightarrow AI.AB=AK.AC\).
c) \(AI.AB=AK.AC\Leftrightarrow\frac{AB}{AC}=\frac{AK}{AI}\)
Xét tam giác \(ABK\)và tam giác \(ACI\):
\(\widehat{A}\)chung
\(\frac{AB}{AC}=\frac{AK}{AI}\)(cmt)
\(\Rightarrow\Delta ABK~\Delta ACI\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABK}=\widehat{ACI}\)(hai góc tương ứng)