K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
1 tháng 11 2023
c: Xét ΔAHB vuông tại H có \(AE\cdot AB=AH^2\)
=>\(AE=\dfrac{AH^2}{AB}\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
=>\(AF=\dfrac{AH^2}{AC}\)
XétΔABC vuông tại A có
\(tanC=\dfrac{AB}{AC}\)
\(\dfrac{AF}{AE}=\dfrac{AH^2}{AC}:\dfrac{AH^2}{AB}=\dfrac{AB}{AC}=tanC\)
=>\(AF=AE\cdot tanC\)
20 tháng 10 2021
\(a,AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\left(pytago\right)\)
Áp dụng HTL: \(AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\dfrac{192}{20}=9,6\left(cm\right)\)
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{16}{20}=\dfrac{4}{5}\approx\sin53^07'\Leftrightarrow\widehat{B}\approx53^07'\)
bạn tham khảo ở đây,mình từng làm 1 lần rồi
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-aduong-cao-ahhfvuong-goc-voi-ac-tai-f-he-vuong-goc-voi-ab-tai-egoi-o-la-giao-diem-cua-ahefchung-minhaaeabafacbbhhc4oeof.1218858994804
1) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)