Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái bài này thì có lẽ bạn nên chứng minh AM⊥FE là nó ra liền à
Tứ giác AEHF là hình chữ nhật (3 góc vuông) \(\Rightarrow HE=AF\) và \(AE=HF\)
\(S_{ABC}=S_{ABH}+S_{ACH}=\dfrac{1}{2}HE.AB+\dfrac{1}{2}HF.AC=\dfrac{1}{2}AB.AF+\dfrac{1}{2}AC.AE\)
Gọi K là trung điểm AB \(\Rightarrow MK\) là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}MK=\dfrac{1}{2}AC\\MK\perp AB\end{matrix}\right.\)
Gọi D là trung điểm AC \(\Rightarrow MD\) là đtb tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}MD=\dfrac{1}{2}AB\\MD\perp AC\end{matrix}\right.\)
\(S_{AEMF}=S_{ABC}-\left(S_{BME}+S_{CMF}\right)=S_{ABC}-\left(\dfrac{1}{2}MK.BE+\dfrac{1}{2}MD.CF\right)\)
\(=S_{ABC}-\dfrac{1}{2}\left(\dfrac{1}{2}AC.\left(AB-AE\right)+\dfrac{1}{2}AB.\left(AC-AF\right)\right)\)
\(=S_{ABC}-\dfrac{1}{2}\left(AB.AC-\left(\dfrac{1}{2}AC.AE+\dfrac{1}{2}AB.AF\right)\right)\)
\(=S_{ABC}-\dfrac{1}{2}\left(2S_{ABC}-S_{ABC}\right)=\dfrac{1}{2}S_{ABC}\) (đpcm)
Qua 2 điểm B và C kẻ đường thẳng song song với đường thẳng d cắt tia AG lần lượt tại E và F
Gọi AI là trung tuyến của \(\Delta\)ABC
Theo ĐL Thales ta có các tỉ số: \(\frac{AB}{AM}=\frac{AE}{AG};\frac{AC}{AN}=\frac{AF}{AG}\)
\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{AE+AF}{AG}=\frac{2AE+IE+IF}{AG}\)
Dễ thấy \(\Delta\)BEI=\(\Delta\)CFI (g.c.g) => IE = IF (2 cạnh tương ứng) => IE + IF = 2.IE
\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{2AE+2IE}{AG}=\frac{2AI}{AG}=\frac{3AG}{AG}=3\)
\(\Leftrightarrow\left(\frac{AB}{AM}+\frac{AC}{AN}\right)^2=9\ge4.\frac{AB.AC}{AM.AN}\)(BĐT Cauchy)
\(\Leftrightarrow\frac{AB.AC}{AM.AN}\le\frac{9}{4}\Leftrightarrow AM.AN\ge\frac{4.AB.AC}{9}\)
\(\Rightarrow S_{AMN}\ge\frac{4}{9}.S_{ABC}\Leftrightarrow\frac{S_{ABC}}{S_{AMN}}\le\frac{9}{4}\)(đpcm).
Đẳng thức xảy ra <=> \(\frac{AB}{AM}=\frac{AC}{AN}\)<=> MN // BC <=> d // BC.
Lời giải:
a) Ta có:
$\frac{S_{AMN}}{S_{AMC}}=\frac{AN}{AC}$
$\frac{S_{AMC}}{S_{ABC}}=\frac{AM}{AB}$
Nhân theo vế thu được:
$\frac{S_{AMN}}{S_{ABC}}=\frac{AN.AM}{AC.AB}$
b)
Vì $AB=AC, AM=CN\Rightarrow AB-AM=AC-CN$ hay $BM=AN$
Do đó:
$\frac{S_{AMN}}{S_{ABC}}=\frac{AM.BM}{AB.AC}=\frac{AM.BM}{AB^2}$
Áp dụng BĐT AM-GM:
$AM.BM\leq \left(\frac{AM+BM}{2}\right)^2=\frac{AB^2}{4}$
$\Rightarrow \frac{S_{AMN}}{S_{ABC}}\leq \frac{AB^2}{4.AB^2}=\frac{1}{4}$
$\Rightarrow S_{AMN}\leq \frac{S_{ABC}}{4}$
Vậy $S_{AMN}$ max bằng $\frac{S_{ABC}}{4}$ khi $AM=BM$ hay $M$ là trung điểm của $AB$, kéo theo $N$ là trung điểm $AC$
Vậy......
Gọi I là trung điểm của BC
Xét tam giác ABC vuông tại A có AI là đường trung tuyến nên \(AI=\frac{1}{2}BC\)
Theo quan hệ đường xiên và đường vuông góc ta có \(AH\le AI\Rightarrow AH\le\frac{1}{2}BC\)\(\Rightarrow\frac{AH}{BC}\le\frac{1}{2}\)(1)
Ta có \(\frac{S_{AMN}}{S_{ABC}}=\frac{\frac{1}{2}AM.AN}{\frac{1}{2}AH.BC}=\frac{AH^2}{AH.BC}=\frac{AH}{BC}\)(2)
Từ (1) (2) suy ra \(\frac{S_{AMN}}{S_{ABC}}\le\frac{1}{2}\)
rảnh quá ha...ko có gì làm hay sao vậy