Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: HM vuông góc với AB
a)
Sửa đề: Chứng minh \(AM\cdot AB=AN\cdot AC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB, ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)(đpcm)
a: ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
b: Giả sử AB<AC
Đặt HB=x; HC=y
Theo đề, ta có: x+y=15 và xy=36
=>x=3 và y=12
=>AB=căn 3*15=3căn 5cm; AC=căn 12*15=6*căn 5(cm)
AM=AH^2/AB=6^2/3*căn 5=12/căn 5(cm)
AN=AH^2/AC=6^2/6căn 5=6/căn 5(cm)
S AMHN=AM*AN=72/5cm2
a AM.AB =AN.AC(=AH2)
b, AH=MN=2(do AMHN là hình chứ nhật)
tam giác AMN đồng dạng với ABC => tỉ số diện tích 2 tam giác là MN2/BC2=22/52=4/25
mà diện tích AMHN=2 lần diện tích AMN=> Diện tích AMHN =8/25 diện tích ABC
Tính được diện tích ABC => diện tích AMHN
a: Xét ΔAHC vuông tại H và ΔBHA vuông tại H có
góc HAC=góc HBA
=>ΔAHC đồng dạng với ΔBHA
b: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
c: ΔAHB vuông tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H có HN vuông góc AC
nên AN*AC=AH^2
=>AM*AB=AN*AC
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
a, AM.AB=AN.AC(=AH2)
b,AH= MN ( AMHN hình chữ nhật)
TAm giác AMN ~ ABC
=> Tỉ số diện tích 2 tam giác là \(\frac{MN^2}{BC^2}\)=\(\frac{2^2}{5^2}\)=\(\frac{4}{25}\)
=> Tính đc diện tích ABC
=> S AMHN =...
AH2 ? How ??