K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2.4\left(cm\right)\\CH=3.2\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HM là đường cao ứng với cạnh huyền AC, ta được:

\(\left\{{}\begin{matrix}HM\cdot AC=AH\cdot HC\\CH^2=CM\cdot CA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}HM=1.92\left(cm\right)\\CM=2.56\left(cm\right)\end{matrix}\right.\)

27 tháng 10 2021

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

27 tháng 10 2021

mình cần phần d

27 tháng 10 2021

a: AC=16(cm)

AM=10(cm)

27 tháng 10 2021

phần d bạn :,)))

2 tháng 9 2021

a, Ta có : \(AB=\frac{2}{3}AC\)

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{144}=\frac{1}{\left(\frac{2}{3}AC\right)^2}+\frac{1}{AC^2}\Leftrightarrow AC=6\sqrt{13}\)cm 

=> \(AB=\frac{2}{3}.6\sqrt{13}=4\sqrt{13}\)cm 

Theo định lí Pytago tam giác ABH vuông tại H 

\(BH=\sqrt{AB^2-AH^2}=8\)cm 

Theo định lí Pytago tam giác AHC vuông tại H

\(CH=\sqrt{AC^2-AH^2}=18\)cm 

=> BC = HB + HC = 8 + 18 = 26 cm 

b, Vì AM là đường trung tuyến tam giác ABC => BM = MC = BC / 2 = 13 cm 

Ta có : BH + MH = BM => MH = BM - BH = 13 - 8 = 5 cm 

13 tháng 12 2023

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

b: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

=>MN=AH

mà AH=4,8cm

nên MN=4,8cm

13 tháng 12 2023

a) Để tính BC, ta sử dụng định lý Pythagoras trong tam giác vuông ABC:

BC^2 = AB^2 + AC^2

BC^2 = 6^2 + 8^2

BC^2 = 36 + 64

BC^2 = 100

BC = √100

BC = 10 cm

 

Để tính AH, ta sử dụng công thức diện tích của tam giác:

S = 1/2 * AB * AH

S = 1/2 * 6 * AH

S = 3AH

 

Vì tam giác ABC là tam giác vuông, nên diện tích tam giác ABC cũng có thể tính bằng cách sử dụng công thức diện tích tam giác vuông:

S = 1/2 * AB * AC

S = 1/2 * 6 * 8

S = 24

 

Vậy, ta có phương trình:

3AH = 24

AH = 8 cm

 

b) Để tính MN, ta sử dụng tỷ lệ giữa các đoạn thẳng trong tam giác đồng dạng. Ta có:

MN/BC = HM/AB = HN/AC

 

Vì HM và HN là đường cao của tam giác ABC, nên ta có:

HM = AH = 8 cm

HN = AH = 8 cm

 

Vậy, ta có:

MN/10 = 8/6

MN = (8/6) * 10

MN = 80/6

MN ≈ 13.33 cm

27 tháng 6 2021

a) Ta có \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

=>AH=12cm

Adung định lý Pytago trong tam giác AHC vuông tại H ta có 

\(HC=\sqrt{AC^2-AH^2}\)

=>HC=16cm

Chu vi tam giác AHC = AH+AC+HC=12+20+16=48cm

b)Xét tứ giác AMHN ta có 

góc MAN=góc AMH =góc HNA=90 độ

=>tứ giác AMHN là hcn

=>AH=MN=12cm

c)xét tam giác AHC vuông tại H ta có:

\(\dfrac{1}{HN^2}=\dfrac{1}{AH^2}+\dfrac{1}{HC^2}\)

=>HN=9,6cm

Xét tam giác MHN vuông tại H ta có : MH=\(\sqrt{MN^2-HN^2}=7,2cm\)

Vậy chu vi tứ giác AMHN=(HN+MH).2=33,6cm

Bài 2:

a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}CH\cdot BC=AC^2\\\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=\dfrac{20^2}{25}=\dfrac{400}{25}=16\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Chu vi tam giác AHC là:

\(C_{AHC}=AH+HC+AC=12+16+20=48\left(cm\right)\)

a: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

c:

Xét tứ giác ANHM có

góc ANH=góc AMH=góc MAN=90 độ

=>ANHM là hình chữ nhật

AD vuông góc MN

=>góc DAC+góc ANM=90 độ

=>góc DAC+góc AHM=90 độ

=>góc DAC+góc ABC=90 độ

=>góc DAC=góc DCA

=>DA=DC 

góc DAC+góc DAB=90 độ

góc DCA+góc DBA=90 độ

mà góc DAC=góc DCA

nên góc DAB=góc DBA

=>DA=DB

=>DB=DC

=>D là trung điểm của BC

11 tháng 9 2016

BH=18 cm

MH=7 cm

MC= 25 cm

AH=24 cm