K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

Do đó: AMHN là hình chữ nhật

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ΔHDB vuông tại D

mà DI là đường trung tuyến

nên \(DI=IH=IB\)

Xét ΔIHD có IH=ID

nên ΔIHD cân tại I

=>\(\widehat{IHD}=\widehat{IDH}\)

mà \(\widehat{IHD}=\widehat{HCA}\)(hai góc đồng vị, HD//AC)

nên \(\widehat{IDH}=\widehat{HCA}\)

ADHE là hình chữ nhật

=>\(\widehat{EAH}=\widehat{EDH}\)

=>\(\widehat{EDH}=\widehat{HAC}\)

\(\widehat{IDE}=\widehat{IDH}+\widehat{EDH}\)

\(=\widehat{HAC}+\widehat{HCA}\)

\(=90^0\)

=>DI\(\)\(\perp\)DE

c: ΔCEH vuông tại E

mà EK là đường trung tuyến

nên EK=KH=KC

Xét ΔKEH có KE=KH

nên ΔKEH cân tại K

=>\(\widehat{KEH}=\widehat{KHE}\)

mà \(\widehat{KHE}=\widehat{CBA}\)(hai góc đồng vị, HE//AB)

nên \(\widehat{KEH}=\widehat{CBA}=\widehat{HBA}\)

ADHE là hình chữ nhật

=>\(\widehat{HAD}=\widehat{HED}\)

=>\(\widehat{HED}=\widehat{HAB}\)

\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)

\(=\widehat{HAB}+\widehat{HBA}=90^0\)

=>KE\(\perp\)DE

Ta có: KE\(\perp\)DE

ID\(\perp\)KE

Do đó: ID//KE

Xét tứ giác KEDI có

KE//DI

KE\(\perp\)ED

Do đó: KEDI là hình thang vuông

d: DI=1cm

mà HB=2DI

nên HB=2*1=2=2cm

EK=4cm

mà CH=2EK

nên \(CH=2\cdot4=8cm\)

BC=BH+CH

=2+8

=10cm

Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot10=30\left(cm^2\right)\)

a: Xét ΔHAD có HM/HA=HN/HD

nên MN//AD

 b: Xét ΔHAD có MN//AD

nên MN/AD=HM/HA=1/2

=>MN=1/2AD=1/2BC

=>MN=BI

mà MN//BI

nên BMNI là hình bình hành

14 tháng 12 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: Ta có: ΔCEH vuông tại E

mà EK là đường trung tuyến

nên KE=KH

=>ΔKEH cân tại K

=>\(\widehat{KEH}=\widehat{KHE}\)

mà \(\widehat{KHE}=\widehat{ABC}\)(hai góc so le trong, HE//AB)

nên \(\widehat{KEH}=\widehat{ABC}\)

Ta có: ADHE là hình chữ nhật

=>\(\widehat{HAD}=\widehat{HED}\)

Ta có: \(\widehat{DEK}=\widehat{KEH}+\widehat{DEH}\)

\(=\widehat{ABC}+\widehat{HAB}\)

\(=90^0\)

=>DE\(\perp\)EK

a: Xét tứ giác ADHE có 

\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE