Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự túc, bùn ngủ => ko vẽ nữa.
a) Ta có: AC _|_ AB ; HE _|_ AB => AC // HE
=> FHA^ = EAH^ (sole trong)
FAH^ = EHA^ (sole trong)
Xét \(\Delta\)FAH và \(\Delta\)EHA :
FHA^ = EAH^
AH chung
FAH^ = EHA^
=> \(\Delta\)FAH = \(\Delta\)EHA (g.c.g)
=> FA = EH (2 cạnh tương ứng)
Xét \(\Delta\)FAE và \(\Delta\)HEA:
FAE^ = HEA^ =90o
FA = EH (cmt)
AE chung
=> \(\Delta\)FAE = \(\Delta\)HEA (2 cạnh góc vuông)
=> FE = HA (2 cạnh tương ứng)
b) Bn ơi, chữ EI hơi lạ. Xem lại nhé.
Bạn tự vẽ hình. Gợi ý:
- Chứng minh tứ giác AEHF là hình chữ nhật.
*Gọi K là giao điểm của AH và EF. Khi đó K là trung điểm AH.
- Chứng minh tam giác AHM cân tại A. Suy ra \(\widehat{MAB}=\widehat{HAB}\)
Mặt khác \(\widehat{HAB}=\widehat{ABI}\) (BI//AH) \(\Rightarrow\widehat{MAB}=\widehat{ABI}\)
\(\Rightarrow\)△ABI cân tại I nên AI=BI.
*CA cắt BI tại S. Chứng minh I là trung điểm BS.
Đến đây bài toán đã trở nên đơn giản hơn (chỉ chú ý vào các điểm C,A,H,B,S và K).
- CK cắt BS tại I'. Khi đó ta cũng c/m được I' là trung điểm BS.
\(\Rightarrow I\equiv I'\) nên C,K,I thẳng hàng.
Suy ra đpcm.
Gọi O là giao của EF và AH, K là giao AM và EF
Vì \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\) nên AEHF là hcn
Do đó \(OE=OF=OH=OA\)
\(\Rightarrow\Delta AOF\) cân tại O \(\Rightarrow\widehat{AFO}=\widehat{FAO}\left(1\right)\)
Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=BM=CM=\dfrac{1}{2}BC\)
\(\Rightarrow\Delta AMC\) cân tại M \(\Rightarrow\widehat{MCA}=\widehat{MAC}\left(2\right)\)
Vì tam giác AHC vuông tại H nên \(\widehat{MCA}+\widehat{FAO}=90^0\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{MAC}+\widehat{AFO}=90^0\)
Mà \(\widehat{AFO}+\widehat{MAC}+\widehat{AKF}=180^0\Rightarrow\widehat{AKF}=90^0\)
Vậy AM vuông góc EF
Answer:
Bạn xem hình mình gửi nhé! Nếu hình bị lỗi thì nhắn cho mình ạ.