K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

a: M đối xứng D qua AB

=>AB là trung trực của MD

=>AM=AD

=>AB là phân giác của góc MAD(1)

M đối xứng E qua AC

=>AC là trung trực của ME

=>AM=AE
=>AC là phân giác của góc MAE(2)

Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

mà AD=AE
nên A là trung điểm của DE

b: Xét ΔMED có

MA là trung tuyến

MA=DE/2

=>ΔMED vuông tại M

c: Xét ΔAMB va ΔADB có

AM=AD

góc MAB=góc DAB

AB chung

=>ΔAMB=ΔADB

=>góc ADB=90 độ

=>BD vuông góc DE(3)

Xét ΔAMC và ΔAEC có

AM=AE
MC=EC

AC chung

=>ΔAMC=ΔAEC

=>góc AEC=90 độ

=>CE vuông góc ED(4)

Từ (3), (4) suy ra DB//CE

a: Xét ΔFCD vuông tại C có CE là đường cao

nên \(FE\cdot FD=FC^2\left(1\right)\)

Xét ΔFCB vuông tại C có CH là đường cao

nên \(FH\cdot FB=FC^2\left(2\right)\)

Từ (1) và (2) suy ra \(FE\cdot FD=FH\cdot FB\)

b: Xét tứ giác CFHE có \(\widehat{CEF}=\widehat{CHF}=90^0\)

nên CFHE là tứ giác nội tiếp

Xét tứ giác ABCH có \(\widehat{CAB}=\widehat{CHB}=90^0\)

nên ABCH là tứ giác nội tiếp

Ta có: \(\widehat{AHB}=\widehat{ACB}\)(ABCH là tứ giác nội tiếp)

\(\widehat{EHC}=\widehat{EFC}\)(CFHE là tứ giác nội tiếp)

mà \(\widehat{ACB}=\widehat{CFD}\left(=90^0-\widehat{CDF}\right)\)

nên \(\widehat{AHB}=\widehat{EHC}\)

Ta có: ABCH là tứ giác nội tiếp

=>\(\widehat{ABH}=\widehat{ECH}\)

Xét ΔABH và ΔECH có

\(\widehat{ABH}=\widehat{ECH}\)

\(\widehat{AHB}=\widehat{EHC}\)

Do đó: ΔABH đồng dạng với ΔECH

1: H đối xứng D qua AB

=>AH=AD

H đối xứng E qua AC

=>AH=AE

=>AH=AD=AE

3: Xét ΔAIH và ΔADI có

AH=AD

góc HAI=góc DAI

AIchung

=>ΔAIH=ΔAID

=>góc AHI=góc ADI=góc ADE

Xét ΔAHK và ΔAEK có

AH=AE

góc HAK=góc EAK

AK chung

=>ΔAHK=ΔAEK

=>góc AEK=góc AHK=góc AED

=>góc AHK=góc AHI

=>HA là phân giác của góc IHK

 

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

24 tháng 11 2019

https://olm.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC+(+g%C3%B3c+BAC=+90+%C4%91%E1%BB%99+)+,+AH+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+BC.g%E1%BB%8Di+E+v%C3%A0+F+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+l%C3%A0+c%C3%A1c+%C4%91i%E1%BB%83m+%C4%91%E1%BB%91i+x%E1%BB%A9ng+c%E1%BB%A7a+H+qua+AB;AC+.+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+EF+c%E1%BA%AFt+B;C+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+t%E1%BA%A1i+M+v%C3%A0+N+.CMR+:+a)+AE=AFB)+HA+l%C3%A0+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+MHNc)+Chung+minh+:+CM+song+song+v%E1%BB%9Bi+EH&id=455200

Bạn tham khảo đường link trên nha, kéo xuống bên dưới đó, mình giải đc rồi nhưng dài quá ko gõ đc :))

À ở câu a) thì cách làm ở link trên đúng và ngắn hơn cách mình làm, còn đây là câu a) của mình nè:

a) Gọi EH cắt AB tại X, FH cắt AC tại Y

Vì E đối xứng với H qua AB nên EH vuông góc AB; EX=XH

Xét tam giác AEX và AHX có:

AX: cạnh chung

EX=XH (cmt)

Góc EXA = góc AXH (=90°)

Suy ra: tam giác AEX = tam giác AHX (c-g-c)

Do đó: AE=AH (2 cạnh tương ứng)  (1)

Vì F đối xứng với H qua AC nên FH vuông góc AC; HY=YF

Xét tam giác AHY và AFY có:

HY=YF (cmt)

AY: cạnh chung

Góc AYH = góc AYF (=90°)

Suy ra: tam giác AHY = tam giác AFY (c-g-c)

Do đó: AH=AF (2 cạnh tương ứng)  (2)

Từ (1) và (2) suy ra: AE=AF(=AH)       (đpcm)

*Bạn tự viết kí hiệu góc, tam giác,...v.v... dùm mình nha, mình ko biết viết*

16 tháng 7 2023

Bạn xem lại đề

16 tháng 7 2023

? tam giác ABCD